
Context Sensitive Intelligence SAKS Workshop March 2006, Kassel, Germany

Towards an Infrastructure for
Context-Sensitive Intelligence

Holger Mügge, Tobias Rho, Daniel Speicher,
Julia Kuck, Armin B. Cremers

Institute of Computer Science III

University of Bonn

A Vision of Generic Adaptive Mobile Devices
Our vision is that mobile computational devices should behave always
appropriate for the situation the user is currently in. The device will become a
generic tool accompanying the user in all its situations of his everyday life and it
will embrace the complete scale of electronic functionality. We will use mobile
devices equally for communication as for payment, as keys, as entertainment
gadgets, navigation tools, and capable of providing arbitrary specific features.

Compared to personal computers we think there is something very special
about mobile devices with regard to their generic usability. On the one hand,
mobile devices demand automatic adaptivity, because its user is always on the
move and does not have time for manual reconfigurations when he suddenly
finds himself in a situation where he requires additional functionality. On the other
hand, mobile devices are increasingly capable of perceiving their current use
context. I.e. they can perceive context data as light, noise, temperature, time,
user, location, and co-located devices etc.

Context-Sensitive Intelligence
Our current research project Context-Sensitive Intelligence (CSI) aims to exploit
both, the demand for automatic adaptivity and the perceivableness of context
data. Goal of the project is a framework for the development of generically
adaptive applications. The main research topics of the project are:

- How shall we model context?
- How should we design context-driven adaptation? In particular: how can

we mediate between the conflicting forces of anticipation and adaptivity?
- What do developers of applications and adaptation need as infrastructure?

Modeling Context
What is Context? First of all, the concept of context is always relative, i.e. it relies
on a certain subject which is the current center of reference. For a given subject
under observation its context comprises all perceivable data that is external to

Context Sensitive Intelligence SAKS Workshop March 2006, Kassel, Germany

itself. We identified some important characteristics of contexts which should be
taken into account for modeling:

- Clear Subject Definition
- Direct and Indirect Context
- Time
- Relevance
- Practical Perceivableness
- Explicit and Implicit Context
- History

Besides these phenomenological topics we collected a first typology of concrete
contexts:

- Computing Context: e.g. network connectivity, bandwidth, CPU
characteristics, running or installed services

- Physical Context: e.g. temperature, lighting, noise level
- Spatial Context: e.g. location, movement characteristics (direction, speed,

acceleration), co-location (distance to other objects)
- Temporal Context: e.g. current time, duration of activities
- User Context: e.g. user profile, history of user activity
- Social Context: e.g. user role in current group, people nearby and their

roles.

Our approach to modeling context is logic-based. We use facts to represent
context values and rules to reason about contexts, for example to infer implicit
context data. We also apply logic for mapping new contexts to adequate software
adaptations in the form of event-condition-action rules.

Context-Driven Adaptation – Requirement Cases
Based on a survey on context modeling by Strang et al. (c.f. [Strang2004])1 we
set up a list of general requirements for context-driven adaptation:

- Distributed composition
- Partial validation
- Information quality and richness
- Incompleteness and ambiguity
- Level of formality
- Applicability to existing environments
- Flexibility of mapping context to adaptations
- Level of needed anticipation
- Richness of adaptivity
- Retrieval and selection of appropriate adaptations

1 Strang et al. set up the first six requirements of our list. They focused on context modeling, and
did not take adaptation – let alone unanticipated adaptation – into account.

Context Sensitive Intelligence SAKS Workshop March 2006, Kassel, Germany

- Expressiveness and usability of specification language

The emerging CSI development framework integrates five adaptation techniques
to tackle the mentioned requirements.

- Object-Oriented adaptation (OO): specialization, delegation, design
patterns. We assume a static OO language (Java, C#, C++, etc.) as
primary implementation language.

- Aspect-Oriented adaptation (AO): statically quantified advices
(before/after/instead), dynamically quantified advices (based on call stack)

- Logic-Based adaptation (Logic): asserting or retracting facts and rules of a
deductive data base

- Architecture-Based adaptation (Arch.): dynamic plug-ins, dynamic service
retrieval, interception of service dependency

- Ontology-Based adaptation (Onto.): compatible service descriptions,
semantic driven adaptation

The following table shows how we expect combinations of these techniques to
work together and fulfill the requirements.

D
is

tri
bu

te
d

C
om

po
si

t.

P
ar

tia
l V

al
id

.

In
fo

rm
.

Q
ua

lit
y

In
co

m
pl

et
e-

ne
ss

Fo
rm

al
ity

A
pp

lic
ab

ilit
y

Fl
ex

ib
le

M

ap
pi

ng

Le
ve

l o
f

A
nt

ic
ip

at
io

n

A
da

pt
at

io
n

R
ic

hn
es

s

R
et

rie
va

l,
S

el
ec

tio
n

La
ng

.
E

xp
re

ss
.

OO +2 +2 +2 +2 +
AO + + + + + +
Logic +2 +3 +2 +2 –2 + + +
Arch. + + + + + + +
Onto. +2 +2 +2 +2 +2 + + + +

We would like to discuss some selected requirements and how we tackle them
by a certain combination of techniques during the workshop. In the following
section we give brief explanations for each requirement case (column in the
table).

Adaptation Techniques for the Requirement Cases

Distributed composition: context-sensitive adaptation always employs distributed
composition by its nature. E.g. when you enter a large building and your mobile
device becomes adapted to integrate a specific navigation system the software

2 Argumentation relies on [Strang2004]
3 Argumentation disagrees with [Strang2004]

Context Sensitive Intelligence SAKS Workshop March 2006, Kassel, Germany

on your device is as well a part of the new appliance as the additional navigation
part. Typically location will rely on external software components interacting with
internal software. OO comes into play as basic implementation language of the
participating components, aspect oriented programming (AOP) contributes point
cuts enabling to adapt multiple components when a cross cutting adaptation is
required. The resulting join points can be distributed and act on inter- and intra-
component level. Logic-based expression of context and reasoning can be
distributed over the participating devices, e.g. sensors can deliver their models
and reasoning implementations (as rules) to the adapted device. A component-
based and service-oriented architecture serves as backbone of adaptivity
allowing for adding and removing service components and changing their
interactions.

Partial validation is important to the developer of adaptations since the interaction
of context reasoning and diverse adaptations involves a high degree of
complexity. Statically typed OOP provides with its type-checking facility some
help to validate the executabilty of adapted programs a priori. The first-class
concept of point cuts expands this validation option to cross cutting adaptations.
On a coarser level a component-based architecture can validate the adaptation
of the software composition e.g. by checking required and provided ports. On the
semantic level, ontological annotations of the software components and
adaptations can help to guarantee that a certain adaptation will be feasible and
have the desired effect for the user.

Context information quality and richness: Context data is perceived by sensors
and often inherently inaccurate. E.g. location information often depends strongly
on the technique used and on the current physical environment. Bandwidth
varies with distance and as a result the richness of the transferred data might
change accordingly. Ontologies serve as backbone for modeling context data
and meta data, e.g. accuracy, perception time. They can be implemented for
example using OWL as specified in [Smith2004]. OOP allows for implementing
dynamic strategies to cope with changes in data richness or quality. Provided
context sensors deliver meta data for their accuracy etc. Logic can be applied to
take these dynamics into account by differentiated reasoning.

Incompleteness and ambiguity: Te context awareness of mobile devices is not
restricted to internal sensors. To the contrary, many applications will take virtual
sensors into account which might be provided by the immediate environment or
even through web-based services, e.g. weather forecasts, co-location sensors.
Therefore, applications for generically adaptive devices should be able to cope
with fluctuating context data. A logic-based context model allows dynamically
asserting and retracting fact and rules for context data and reasoning. Integrating
new sensors must of course be supported by the architecture, which is given for
component-based and service-oriented architectures. Ontological descriptions of
the sensors enable to select the required sensors and evaluate their interrelation
to others.

Context Sensitive Intelligence SAKS Workshop March 2006, Kassel, Germany

Level of formality: The cooperation of original software with unanticipated
adaptations requires a common understanding between all participating parts.
Together with the high degree of interaction complexity formalization of concepts
definitions is of much interest4. A logic-based description of context-awareness is
relatively close to a formal representation and exposes concept definitions much
clearer than an OOP-based implementation usually does. Ontological
annotations provide for a clear definition of concepts on the semantic level. AOP
provides with point cuts a first-class concept to express cross-cutting adaptations
and therefore contributes to formality on the implementation level. This is
increased as we have developed a logic-based extension of AOP which allows to
use logic reasoning within the declaration of point cuts as described in
[Rho2004].

Applicability to existing environments: With J2ME and several other platforms
OOP can be applied on mobile devices easily. Even component-based service-
oriented architectures can be realized, e.g. with several OSGi-based
implementations like Kopflerfish or Equinox. Ontological interpreters are readily
available for mobile platforms. Nevertheless we face problems with employing
logic-based deductive databases on mobile devices and will probably be
restricted to a client-server architecture for integrating them.

Flexibility of mapping context to adaptations is an important issue, in particular
when the adaptivity has not been anticipated by the developer of the original
software. As an enabler the architecture must allow for changes. This is granted
in principle by component-based service-oriented architectures. Furthermore we
require a loose coupling of services, which we support by extending OSGi
towards distributed tracking and interception of services (c.f. [Gu2004] for similar
approaches). The logic database allows for exchanging context reasoning at
runtime, e.g. for interpreting newly defined situations as the user enters a certain
setting. Aspect-oriented techniques allow describing context-driven adaptations
in one place that adapt the software at several places and hence enhance
flexibility for the developers.

Level of needed anticipation: for our vision of generically adaptive software
anticipation of particular adaptations should be avoided or at least minimized.
Nevertheless, in most cases adaptations require some preparation by the original
software in order to be safely applicable and provide useful functionality. E.g. a
co-location-based sorting of emails is certainly a useful feature that eases the
users access to the most relevant mails for the user's current situation. To be
applicable the sorting adaptation needs access to the mails to compute their
relevance and it needs a way to modify the previous sorting algorithm. The CSI
framework aims to provide the developer of the original software to open it up to
later adaptation without too much specificities by generic variation points. We use

4 Obviously the level of formality is strongly related to partial validation, since a higher level of
formality will make partial validation easier.

Context Sensitive Intelligence SAKS Workshop March 2006, Kassel, Germany

OOP techniques like design patterns to provide such variation points with
semantics as generic as possible, e.g. strategies, decorators etc. AOP
techniques combined with logic description provide further generality for variation
points and reduce the need to explicitly define them. Ontological annotations
should also be used in a most general manner. The later needed specificity
should arise from combinations of annotations. The service-oriented architecture
we employ allows for integrating previously unknown components.

Richness of adaptivity: the richness of an adaptation denotes to what extend it
exploits the potential integration with the original software. E.g. new functions
may cross-cut several original features and should exploit that. The user
interaction paradigms used before an adaptation should be respected and
continued as far as possible. These samples show how the richness of
adaptations depends on available information about the original software. This
adaptation interface of the software should not only rely on the component level,
but employ a gray box view instead. AOP features in particular when they are
capable to describe fine-grained point cuts help to exploit the adaptability
information (c.f. [Rho2006]). Hence, we should support the developers in
providing suitable information easily. Ontological annotations provide the
backbone for this kind of information on three levels: syntax, semantic and
pragmatic5. Logic-based reasoning can also contribute to exploit available
information about the software to be adapted.

Retrieval and selection of appropriate adaptations: In most adaptation scenarios
a large number of services and potential adaptations are available. Based on the
user's profile and his context appropriate adaptations should be selected.
Ontological descriptions of software components on a syntactic level (i.e.
compatibility in the OOP sense) and a semantic level (i.e. suitability of
functionalities) serve as the backbone of adaptation retrieval. We plan to use
additionally community feedback on a pragmatic level.

Expressiveness and usability of the specification language is important since we
aim to support the developer of generically adaptive software. AOP point cuts
combined with logic facts and rules provide a very expressive set of language
concepts. Semantic annotations based on ontologies provide an easy to use and
effective way of preparing the software towards adaptivity without anticipating
concrete adaptations.

Status Quo and Urging Open Research Questions
In the previous sections we depicted the development framework for generically
adaptive mobile software which we work towards in the CSI project. The scope
under consideration is quite wide and we can not overlook by now to what extend

5 The three levels of ontological information are shortly defined in the paragraph on retrieval and
selection of appropriate adaptations in the same section.

Context Sensitive Intelligence SAKS Workshop March 2006, Kassel, Germany

we will be able to give suitable answers in terms of a guideline for developers or
even in terms of a usable implemented framework.

We have elaborated the conceptual landscape and identified a list of
requirements. Furthermore, driven by practical experiments we came up with a
combination of several different software engineering techniques which we
believe can be fruitfully combined to tackle the requirements. We currently see
the following three research questions as most urging:

- How can we balance between the conflicting requirements of a low

anticipation level and the demand for rich adaptivity? How can such a
balancing process be systematized or even formalized?

- What do typical developers of adaptive and adapting software expect as
means for their work? How can we provide a usable integration of the
mentioned techniques?

- How should the adaptation techniques be employed to let the end users
gain advantages of adaptivity most effectively?

References
[Gu2004] Gu, T., Pung, H.K., Zhang, D.Q.: Toward an OSGi-based infrastructure

for context-aware applications. In: IEEE Pervasive Computing, vol. 03, no. 4.
(2004)

[Laddad2005] Laddad, R.: Aop@work: Aop and metadata: A perfect match, part
1—concepts and constructs of metadata-fortified aop. Technical report, IBM
Developer Works (2005)

[Rho2004] Rho, T., Kniesel, G.: Uniform genericity for aspect languages.
Technical Report IAI-TR-2004-4, Computer Science Department III,
University of Bonn (2004)

[Rho2006] Rho, T., Kniesel, G., Appeltauer, M.: Fine-grained generic aspects,
foundations of aspect-oriented languages workshop, aosd 2006. (2006)

[Smith2004] M.K. Smith, C.W., McGuinness, D.: Owl web ontology language
reference. http://www.w3.org/TR/owl-ref (2004) World Wide Web Consortium
(W3C) recommendation.

[Strang2004] Strang, T., Linnhoff-Popien, C.: A context modeling survey. In:
UbiComp Workshop on Advanced Context Modelling, Reasoning And Management.
(2004)

