Towards Context-Sensitive Service Aspects

Tobias Rho
rho@cs.uni-bonn.de

Mark Schmatz
schmatz@cs.uni-bonn.de

Armin B. Cremers
abc@cs.uni-bonn.de

Dept. of Computer Science III, University of Bonn
April, 15th 2006

Abstract

The advantage of services in terms of a service-
oriented architecture is at the same time its disad-
vantage. Services must be general enough to fit the
needs of as many clients as possible. On the other
hand, such generality cannot address each single re-
quirement. Although services can be parametrized in
order to customize behavior this can only happen in a
reasonably outlined domain and must have been an-
ticipated.

We propose context-sensitive service aspects to solve
this dilemma. Services can be kept compact and un-
aware of their context and the aspects adapt them to
the current environment.

Additionally we introduce an abstraction layer, the
context management, which decouples context re-
trieval and utilization.

1 Introduction

State-of-the-art mobile applications have a strong
need for context-sensitive behavior. Location-based
services have become widely accepted and are used
e.g. for special mobile phone rates or navigation.
But, context-aware behavior is usually hard-coded
into the application itself using the deployed libraries
on the device. Since these have to be known at de-
velopment time context-processing is limited to the
known libraries on the corresponding target device.
Besides that, not all context-sensitivity can be antic-
ipated. Being bound to one device neither compo-
sition nor sharing of context information is possible.
To build flexible applications that adapt themselves
to the current situation, the underlying architecture
must provide the means to dynamically reconfigure the
application based on context information.
Service-oriented architectures (SOA) help to sup-
port the dynamic reconfiguration of applications.
They modularize applications by decomposing them
into distributed components, so called services. Ap-
plications are build by composing these services and

configuring them at runtime. Therefore we base our
architecture on service-orientation.

Several service composition techniques have been
proposed [1, 2], but they all miss the possibility to in-
corporate context information in the composition. We
consider this an essential property for a dynamic en-
vironment where services, like body function sensors,
are only optionally available. Therefore we propose a
new composition technique based on aspect-oriented
programming which takes context information into ac-
count.

The concept of aspect-oriented programming (AOP)
[3] provides the means to inject code into existing pro-
grams without anticipating the changes in the base
program. The code is oblivious to the concern imple-
mented by the aspect. Extracting context-dependent
behavior into aspects and weaving them based on the
current situation can solve the depicted dilemma. This
is supported by Martin [4]. He claims that dependen-
cies within software systems should only exist from the
stable to the unstable parts. Nordberg [5] mapped this
idea to the concepts of AOP and components compo-
sition. Aspects help to improve the software design by
encapsulating the unstable composition concern. AOP
frameworks like [6] have been proposed which realize
this concept.

Ambient intelligence introduces an even more unsta-
ble element - the varying context, which influences the
runtime adaptation of the service composition. Using
AOP to encapsulate the service composition the ser-
vices stay compact and stable because they are inde-
pendent of adaptation strategies and context informa-
tion.

However, common aspect languages only consider
the event flow of programs. The AOP terminology
for program flow events is join point. Typical join
points are method calls, field accesses or thrown ex-
ceptions. In an ambient intelligence setting these join
points are not sufficient. The properties of the envi-

1n the context of web services a huge number of composition
approaches have been developed. We name BPEL4WS only as
an placeholder for BPEL, WSFL or XLANG.

ronment must also be taken into account. To combine
contexts and join points a powerful pointcut language
is needed. Since the concept of context always relies
on a certain subject we must also take into account
that various subjects have different ways to perceive
context. The combination of different context views
is necessary to reason about more complex relations
between subjects, like auxiliary dates for a group of
businessmen?. Therefore, the pointcut language must
be capable of including information outside the con-
text view of the local machine.

There are also some restrictions compared to com-
mon AOSD approaches. We cannot apply AOP tech-
niques in full extend on the SOA level, because the
concrete implementation of services is, at most times,
not accessible to our local system. And even if the
service implementation is available there may still be
different views onto the same service from the local
or a remote system which are in a different contexts.
That is why we restrict the join point model to calls
on the service level. This also conforms with the infor-
mation hiding principle [7] which postulates that an
evolvable design should provide functionality through
a controlled interface and hide the concrete implemen-
tation details.

This paper introduces the Ditrios architecture and
the service aspect language CSLogicAJ, which pro-
vide context-sensitive services aspects for the service-
oriented architecture OSGi [8].

In the following section we give a brief description of
the technologies we base on and point out their short-
comings. Then, in section 3 we address the mentioned
shortcomings by introducing the Ditrios architecture.
Section 4 describes how our approach represents and
manages context information. Section 5 explains how
we integrated the processing of context information
within Ditrios in terms of adapting services context-
sensitively with service aspects.

In Section 6 we describe the realization of service
aspects, the language CSLogicAJ, a generic context-
aware aspect language for Ditrios. Section 7 gives a
real world scenario solved with the new technologies,
Section 8 presents an overview of related work and
Section 9 concludes this paper.

2 Base Technologies

2.1 OSGi

The OSGi Service Platform is a specification intro-
duced by the OSGi Alliance in March 1999 [9]. Its
aim is to specify a SOA-based framework which allows
network delivery of managed services to local networks

2This example is thoroughly discussed in Section 7

and devices. Frameworks designed according to this
specification enable comfortable registering resp. un-
registering and use of modular software components -
in terms of OSGi: bundles and services.

2.2 Shortcomings

OSGi is a framework which has to fit many differ-
ent requirements. It has to stay technically low-level
while providing all further needed support as an API
to accomplish the requisites. The following sub sec-
tions enumerate the limitations of OSGi concerning
an ambient intelligence setting and its particular re-
quirements.

2.2.1 Stale References

Concerning, for example, abrupt service departure of-
ten implies the appearance of so-called stale references
([9], page 112) which is a very common problem to
handle. On the one hand OSGi provides tools and
techniques like listeners and trackers ([10], page 333ff)
which help dealing with this but on the other hand lis-
teners considered harmful as mentioned and explained
in [§].

As a solution [8] introduces the Whiteboard pattern
which relieves many but not all responsibilities of the
developer’s burden. However, both approaches im-
ply dealing with a typical middleware concern which
should not carried out by the client side.

2.2.2 No direct networking support

OSGi has no direct applicable support for inter-
framework communication and hence no support for
handling remote services. Though providing the io
package known from J2MFE no high-level API exists
simplifying remote communication.

2.2.3 Manual service retrieval / management

Concerning SOA, clients have to care about service re-
trieval themselves. Furthermore, they have to manage
the requested services after the retrieval succeeded.
Latter implies dealing with the departure and the re-
arrival of services and, of course, stale references. This
is tedious and actually a typical middleware concern.
Considering OSGi in terms of a platform for highly
dynamic services this problem even increases.

2.2.4 Manual service composition

OSGi does not provide composition support for ser-
vices. The standard procedure is to find services
over a the service registry, track and use them.

This approach does not consider relationships be-
tween services and therefore there is no way to ex-
press compositions of services. In particular dynamic
(re)composition of service according to external cir-
cumstances is not supported.

3 Ditrios

Ditrios? is a complete SOA framework based on OSGi
allowing context-sensitive weaving. Its aim is to com-
bine the technologies of aspect-oriented software de-
velopment and service-oriented architectures based
on OSGi. This integration results in a middleware
framework encapsulating the complete service man-
agement ranging from searching and tracking to pro-
viding of services while remaining fully transparent to
the clients at the same time. On top of that so-called
service aspects give flexible control over services and
enable generic adaptation triggered by either method-
calls or context changes.

A special interface, the ClientService, establishes
communication between Ditrios and client applica-
tions and thereby provides access to the Ditrios frame-
work over a simple API.

A client inquires services via its ClientService by
means of a special request object (which consists
mainly of a LDAP search string). Found services are
then bound to the corresponding request object so
that the client can identify its acquired services over
the associated request.

3.1 Service adaption

The power of Ditrios is the support for transparent and
easy adaption, extension and substitution of services
with the help of service aspects. A newly introduced
join point model combined with an extended point-
cut language enables this adaption to be generic and
context-sensitive.

3.2 Proxy indirection

All services belonging to the same request are wrapped
within a proxy. Due to the use of service aspects and
their implied policies one adequate service can be cho-
sen as the default service which is then transparently
utilized by the client. In the case that all services of
a proxy are gone, a “fallback” service can be intercon-
nected which induced by a service aspect.

Because of the proxy indirection clients are not
aware of the indirection and also do not have to be

3DIstributed TRacking and Interception Of Services

transaction-
aware service
adaption

service

sets

transaction

boundaries context
change

event

Context

1") get transaction| | management

mode Ditrios

Figure 1: Services are transaction-aware

aware of stale references, service unavailability, service
upgrades* or substitutions.

3.3 Transaction-awareness

Sometimes service adaptions like upgrades and substi-
tutions must not occur while within certain process-
ing state on the client side. Therefore, the client must
be able to define transaction boundaries wherein no
context change, service upgrade, etc. may affect the
program flow.

In order to know about whether being in a transac-
tion or not, the proxy can request the ClientService for
the transaction mode and additionally service aspects
have in turn access to this information.

Figure 1 depicts how transaction works.

However, if services are semantically equivalent, in-
dicated through their annotated attributes, service
substitution may be accomplished.

3.4 Remote capabilities

Ditrios is not limited to locally deployed services. Re-
quests can also be delegated to remote Ditrios systems
which in turn try to track the requested services. If
appropriate services can be found on a remote Ditrios
system references to them are injected to the inquiring
ClientServices. For this to be done references to the
ClientService instances are also passed to the remote
systems. The underlying technique is based on Java
RMT [11].

3.5 The Ditrios workflow

In order to be able to participate in the Ditrios
framework a client has to acquire a ClientService in-
stance which is thenceforward exclusively assigned to

4A service upgrade could arise if e.g. a client would be iden-
tified as a legitimate in using some premium service.

‘ Client ‘ ((
adapts
API
‘ ClientService @ ’
Event
Context P
management
Ditrios poll
or
push
Context .
provider | | | <mm f

Figure 2: Ditrios workflow

it. The ClientService will immediately be tracked by
the Ditrios framework after instantiation®.

After that the client may request one or more ser-
vices by defining appropriate search requests. All re-
quests are delegated with the help of the ClientSer-
vice to the Ditrios core system which in turn attempts
to track the corresponding services. A proxy instance
wrapping all matching services will be created for each
request. References to the proxies are then returned
(“injected”) to the ClientService so that the owning
client can utilize them over the APL.

Every status change of the requested services is
reflected by an event which informs corresponding
clients provided that they implement the appropriate
event listener.

Figure 2 depicts the workflow.

Service weaving Because services are wrapped
within proxies, Ditrios is able to intercept method
calls and weave service aspects in between. Besides
this synchronous interception, Ditrios can also weave
asynchronously triggered by context changes like e.g.
updated sensor information or service arrival / depar-
ture.

In section 5 we will explain the weaving process in
more detail.

5This is achieved due to the use of the Whiteboard pattern
[8]. The ClientService itself is designed as a service and only
needs to be registered with the framework in order to be used.

Key Domain Type
types WSDL URL url
accuracy quality (0-100) int
accuracy unit | meter | seconds | ... | string
qos® 0-100 int

cost Amount Currency
cost unit Sec | KB | ... string

Table 1: LDAP keys assigned to context services

4 Context Management

4.1 Definition and representation of
context

Before we consider context management itself we have
to give a short definition of what we call context in-
formation.

First of all, the concept of context is always relative.
It relies on a certain subject which is the current cen-
ter of reference. Considering two persons or devices
at the same time their perceived context is mostly dif-
ferent. Their view onto the world is different, because
they are in a different environment and have different
capabilities to observe their environment.

We consider all information perceivable from the
considered system as context. To be perceivable by
a computer system we have to make it available in a
structured form. At the same time contexts may be
perceived in different ways. Therefore we must also
consider and order context information by quality.

We structure the context information with the help
of WSDL [12] types. This decision was influenced
by several properties of WSDL. At first it provides
global, language independent type descriptions with
mappings to a substantial set of languages. Second,
this approach naturally integrates with web services.

4.2 Tracking and analyzing context

The service-oriented architecture is facilitated to track
and select context information. Context informa-
tion, like hardware sensors, profile information and
service tracking information are advertised as OSGi
services implementing the Interface IContextProvider,
see Figure3. They optionally specify the keys of Table
1 to enable a reasonable context selection.

The context management system uses a snapshot
approach to gather new context data similar to in ac-
cordance with common context management systems
[13]. On every snapshot the context provider services
are asked for changes’.

"We also provide a push mechanism for context information,
but since context management is not the main focus we will not

interface IContextProvider {
Delta getDelta(TimeStamp) ;

}

Figure 3: IContextProvider

Two kinds of context information are supported: en-
tities and relations - in accordance with the entitiy
relationship model. Entities are described as WSDL
types, relations as WSDL messages.

Every entity must be globally referable by an unique
id. Typical examples are persons, devices, locations.
Composition and selection of services is not imple-
mented on this architecture level. The AOP tech-
niques in Section 6.4 are facilitated for this purpose.

5 Service aspects

Service aspects are the heart of the Ditrios architec-
ture. They operate on proxies and services as depicted
in figure 2 and provide the means to control dynamic
composition of services. Building up the glue between
context information and services they enable the lat-
ter to be context-sensitive. Since service aspects them-
selves are enclosed in services holding state for the im-
plemented concern weaving and unweaving can simply
be realized through activating resp. deactivating them
within the framework.

We distinguish two different kinds of weaving imply-
ing two different advice characteristics. Although they
share the same syntax they have different semantics.
The following will show the difference.

Synchronous advice is applicable on the service
message level. Such advice intercept -calls
to service interfaces taking the program flow
and all available context information into ac-
count. The commonly known before, after or
around advice can be used to execute additional
code. Furthermore, transparent (re)binding resp.
(re)composing of services is possible due to the
proxy architecture. Synchronous advice corre-
sponds to the common dynamic weaving.

Asynchronous advice react exclusively on context
changes indicated through contert providers.
Such advice is comparable to event-condition-
action (ECA) rules known from relational
databases. The event is the change of the context,

discuss it here in detail.

(onchange | before | after | around)
<name>(<parameters>) : <pointcut expression>
{

<advice body>

}

Figure 4: Semi-formal syntax of CSLogicAJ’s general-
ized aspect construct.

the condition is represented by a pointcut desig-
nator and the action by the advice code. Asyn-
chronous advice does not need program-execution
pointcuts.

The terms asynchronous and synchronous refer to the
execution time relative to the application work flow.
Based on these two kinds of advice the architecture
controls service composition and dynamic code weav-
ing. All information gathered and provided by context
providers is consolidated in the context management
(see section 4). Due to its provided listener and polling
mechanisms® service aspects gain access to the context
information. With the help of service aspects existing
services become context-aware and therefore have the
possibility to behave accordingly.

The next section will describes a realization of ser-
vice aspects - the CSLogicAJ language.

6 CSLogicAJ

CSLogicAJ (Context-aware Service-oriented LogicAJ)
is a realization of service aspects. It is based on the
generic aspect language LogicAJ. LogicAJ[14, 15] is an
aspect-oriented extension of Java that supports meta-
variables in pointcuts, introductions and advices. This
section only sketches the main concepts of the lan-
guage. A thorough introduction can be found in [14].
CSLogicAJ only inherits the advice concept, the call
pointcut, and logic meta-variables from the LogicAJ
language. Synchronous advice (see Section 5) is ex-
ecuted at runtime by intercepting methods calls on
the service level of the Ditrios architecture and incor-
porate the context information from context provider
services. Asynchronous advice is identified through
the onchange advice®.

The pointcut expression is reevaluated every time
the context information the expression depends on
changes. But, the onchange advice is only activated if
at least one of the declared parameters has changed.

8Depending on the chosen mechanism context changes are
received actively or passively.
9Which is an abbreviation for “on context change”.

after() :
call(?ret 7type.?m(..)) &&
current_service(?service) &&
service_attr(?service,
"service.id", 7id)

log("called method: " +
?"m" + " on service "+ "7id");

}

Figure 5: Service level logging call pointcut.

6.1 Logic Meta-ariables

The logic meta-variables share their semantics with
logic variables in Prolog. Readers unfamilar with Pro-
log, or logic programming in general, see e.g. [16]
for an introduction. Logic meta-variables are denoted
syntactically by names starting with a question mark,
e.g. “Tentity”. They can be used uniformly in point-
cuts and advices.

In addition to meta-variables that have a one-to-one
correspondence to individual Java language elements,
LogicAJ introduces logic list meta-variables that can
match an arbitrary number of elements, e.g. any num-
ber of call arguments or method parameters. These
variables are indicated syntactically by two leading
question marks, e.g. “??parameterList”. Their in-
troduction is motivated by the fact that in generic
application scenarios it is often necessary to express
statements like “match every constructor invocation”.
Unnamed logic meta-variables are indicated by an un-
derscore (?_ and ??_). The pointcut may contain
several unnamed meta-variables, they are all treated
as distinct variables.

6.2 Pointcut Language

CSLogicAJ’s pointcut language is a logic language
with typed logic variables and all-solutions meta pred-
icates'9. It allows remote evaluation and provides
means to select service level join points and context
information and supports aggregating the latter. The
synchronous advice must contain a call pointcut to
select the methods to intercept. Figure 5 gives an
example of simple logging aspect which tracks calls
to services and writes the method name and ser-
vice id to a log file. The predefined pointcut cur-
rent_ service(Service) binds the called service to its
argument, service(Service) binds all available services.
The pointcut service_ attr(key, value) gives the devel-
oper access to the properties associated with the called
service.

10We provide the all-solution predicates findall, bagof and
setof known from Prolog [16].

import_context "http://../time.wsdl";
onevent ()
time(?Time, 7_, 7_, 7_, 7_) &&
element (?Time, "hour", 10)

{

Time time = ?Time; // automatically
// mapped & casted
print("time for breakfast: " + time);

}

Figure 6: Import context information.

6.2.1 Importing and Querying Context

To use context information in an aspect we must im-
port the namespace of the context. Figure 6 shows
the syntax for the import. Since context information
is described by WSDL!! we only have to reference the
WSDL URI for the context description.

Now we can use the declared types in equiv-
alent pointcuts. Figure 6 uses a time context
which provides information about the current time.
The complex type time contains the elements hour,
minute, second and milliseconds and is mapped to the
predicate time(?TimeEntity, ?Hour,?Minute, ?Sec-
ond, ?MS). You can directly refer to one of the argu-
ments via the element pointcut. The first argument
is the entity, the second the name of the element, and
the third its value. Figure 6 demonstrates the use with
a restriction of the time value to the 10th hour!?.

Context information, with provided Java bindings,
is automatically wrapped into the corresponding ob-
jects for every binding and can therefore be easily re-
ferred to in the advice body. For every list of objects
we provide an array. The minimal set of bindable
context values are basic types like int, float, string,
boolean etc. The example makes use of the automatic
mapping of context to Java objects by assigning ?time
to time variable.

6.2.2 Remote Pointcuts

Pointcuts are by default executed on the local context
management system. This is not sufficient when we
need to query the context of another user, e.g her/his
profile information.

In this case the remote execution of pointcuts is pos-
sible. All we need is the URI of the remote Ditrios
system to execute the query. This information is e.g.
available when the other user is already known to a
context provider like a location provider. A concrete
example is given in the example section in Figure 11.

HOther languages like e.g. OWL are also imaginable.
12The pointcut time(?Time, 10, 7, ? | 7) is equiva-

lent to the pointcut description in Figure 6. The figure just
demonstrates the use of the element pointcut.

6.3 Service Composition

On the OSGi platform the client selects a service by
querying the OSGi platform and keeps a reference to
the queried service. Here, the clients should not know
any details about context-aware service variants and
therefore we must be able to replace bound services
on the architecture level.

Therefore we provide service composition means
in the aspect language. All services can be queried
by the pointcut service(?Service), the pointcut ser-
vice_attr described in Section 6.2 resolves the at-
tributes of the service. Since the client, which
uses a service, is not by itself identifiable, a re-
binding of a service is made based on the re-
quest issued by the client, see Section 3 for de-
tails on service requests. Therefore we provide a re-
quest(?Request, ?LDAP) pointcut which binds all re-
quest and their LDAP queries'*. The pointcut re-
quested_ services(?Request, ??Services) binds the ser-
vices resolved by the platform to ?2Services. The
pointcut current_request(?Request, ¢?LDAP) binds
the current request for a synchronous advice. The
pointcut in_ transaction(?Request) checks the trans-
action status of the request’s client, see Section 3.3 for
transaction awareness.

To rebind a service the method bind(Request, Ser-
vice) is available in the advice body of the aspect.
The advice in Figure 7 exemplifies the use of the bind
method. The before advice intercepts all calls to meth-
ods of the Time service and binds the corresponding
Time service and request. Line 7 checks that the client
is currently not in an transaction. Otherwise the client
assumes unvarying behavior from the service and we
would then not be allowed to change it. In line 8 the
current time zone bound via the corresponding con-
text provider. The lines 10 - 12 look up an service
with the same time zone for the current position. If
the time zone has changed and a Time service for the
current country exists the currently bound time ser-
vice is replaced with the new time service in the advice
body.

13

6.4 Context Provider Selection

The service composition mechanisms are also used to
manage the available context provider services (Sec-
tion 4.2). If different context provider services offer
the same kind of information, e.g. the current GPS
position, aspects can be used to choose between them
based on their context specification given in Figure 1.

131n literature also the terms service choreography is used for
the binding of services.

14 Actually, we use a request object which encapsulates the
LDAP string instead of applying the LDAP string directly.

The object can be identified by its id.

1 import_context

2 "http://../time_zone.wsdl";
3 before(?7country)

4 call(?_ Time.?m(?7args)) &&

5 current_service(?old_time_zone) &&
6 current_request(?7request) &&

7 not(in_transaction(?request)) &&
8 time_zone(?time_zone) &&

9 service(?curr_time_zone) &&

10 service_attr(?curr_time_zone,

11 "time_zone",

12 7time_zone) &&

13 not(equals(?old_time_zone,

14 ?curr_time_zone)) {

15 bind(?7request, 7curr_time_zone);
16 }

Figure 7: Runtime service rebinding.

The specification is available in the service attributes
and can be queried by the service_ atir(?service, key,
?value) pointcut.

Figure 8 illustrates how aspects are facilitated to
implement a policy for the context provider selec-
tion. First, an aspect X requests a certain context
information, here the location. The context manage-
ment will query the service registry for a qualified con-
text provider. At that point the synchronous aspect
Y controls the selection among the available context
providers based on their LDAP properties (see table
1). The aspect may at that point consider user pref-
erences or consult the user for concrete selection. If
new context providers become available in the future
the aspect’s policy will be evaluated again and a new
context provider may be selected.

6.5 Exception handling

In dynamic environments like ambient intelligence set-
tings services typically fluctuate. There may be sev-
eral reasons, like an unstable network connection or
deactivation of a service on another device. Therefore
exception handling for remote calls is essential. Since
this is not the focus of this paper we only sketch the
Ditrios solution here. In our setting two typical fail-
ures may Ooccur.

1. A used service is not available anymore while a
method call is executed.

2. An remote pointcut evaluation is interrupted.

In the first case a ServiceRemoteException'® will be
thrown which is passed to the Ditrios architecture.
Synchronous advice can intercept the exception with

15 A runtime exception defined by Ditrios.

depends on
location.wsdl

Context
Management

binds context
provider

Context
provider

Context Context
provider provider

location.wsdl location.wsdl |ocation.wsdl

accuracy =100 m accuracy =5m accuracy = - 1

cost=0 cost=0.1€/h cost=0

GSM WLAN DEFAULT
analysis

Selecting between different

Figure 8: content

providers.

the pointcut serviceException '¢ and rebind the ser-
vice request to another, e.g a fallback or default ser-
vice. Different rebinding alternatives for different sit-
uations can be implemented with different advices. If
no pointcut matches the exception the ServiceRemo-
teException is thrown to the calling client.

In the second case the evaluation of the enclosing ad-
vice’s pointcut designator is stopped and the pointcut
evaluation is repeated. This is necessary since bind-
ings for the pointcut’s arguments may already exist
from previous backtracking steps.

7 Example

Consider the following scenario: two business people
are at an exhibition. They know each other and have
an appointment the next day. However, for both it
would be a great help if they could meet already to-
day easing their schedule tomorrow. This, of course,
requires knowing that the other is nearby. Unfortu-
nately they do not know about that. This example
motivates that awareness of arbitrary context infor-
mation, like the presence of other persons, can help
managing daily routines. The prior example repre-
sents any situations where further knowledge would
be important or at least advantageous.

A solution for the described scenario would be a ap-

16The serviceFxception pointcut binds the service request,
the properties of the service and the name and the arguments
of the called method.

pointment optimizer service aspect!”. Assuming that
both partners use mobile devices each running the
Ditrios framework they could have deployed a very
naive date book service and entered the appointment
for the agreed time. However, for collaboration pur-
poses the date book’s data modell must be available
externally.

The workflow would be as follows: in the moment of
entering the exhibition hall the business men’s mobile
devices resp. the Ditrios systems on them participate
in the exhibition hall’s Ditrios system'®. Seconds later
they receive a notification about newly available ser-
vices. This could be everything but in our case only
the mentioned appointment optimizer service aspect
and a device resolver service matter. Now, having ac-
cess to the offered services the devices are henceforth
able to optimize existing appointments.

In more detail, the onchange advice'® defined in the
optimizer aspect

1. gathers all contacts from the date book service
where appointments exist within e.g. the next
two days?°.

2. resolves all nearby contacts.
This is achieved through a device resolver service.

3. queries the resolved candidate contacts for to-
day’s free time periods.
For this to be done the contact’s remote Ditrios
system is queried through remote pointcut evalu-
ation (see 6.2.2).

4. calculates auxiliary dates.

Concluding, in the advice body the user will be noti-
fied about possible optimizations for each candidate.
An appropriate GUI displays all candidates with the
calculated auxiliary dates and offer the notification of
the respective counterparts in order to arrange bring-
ing forward the appointments.

The following figure depicts the workflow.

7.1 The aspect implementation

Now we explain the date optimizer aspect in detail.
Its purpose is to compose and analyze the necessary
context information and find the auxiliary dates for
present contacts. On every change of dependent con-
text the condition is reevaluated.

Figure 10 show the complete aspect. At first we im-
port the context specifications from the given WSDL

17The aspect is in turn wrapped within a service.
18This could be done over a gateway service.
introduced in section 10

20The time period would be configurable, of course.

Exhibition
hall server

Ditrios

device
resolver
4
4
deploy \

Device B

date book

.

Device A

Ditrios !

operates on

—--

date book

Ditrios

CP: device
resolver

_remote
pointcut evaluation

context) context
management management

Figure 9: Deployment diagram for the example

descriptions. For the scenario we need access to our
appointments, the current location of people at the ex-
hibition and we need to know the current time. Then
we define some auxiliary pointcuts to structure the
pointcut description of the forthcoming onchange ad-
vice. The first advice dates mnext days, which was
exemplarily implemented, looks up the appointments
for the next three days. The nearby pointcut deter-
mines if an person is in an radius of 300 Meters?!. The
ditrios pointcut looks up the device used by the at-
tendee. This relation is provided by the location con-
text provider. The device exposes the unique ditrios
URI which is needed to reference the ditrios system
and query its context management system.

21 A more sophisticated version could make configurable in the
user profile.

import_context "http://../appointment.wsdl";
import_context "http://../location.wsdl";
import_context "http://../time.wsdl";

import sam.person.*;

import sam.location.*;

aspect AppointmentOptimizer {
pointcut dates_next_days(7Appm)
today (?Today) &&
element (?Appm, "date", AppmDate) &&
date_diff(?Today, 7AppmDate, ?Diff) &&
between(1, 3, 7Diff);
pointcut nearby(?Person)
pointcut ditrios(?Attendee,
?DitriosURI)
pointcut free_periods_today
(??FreePeriods)
pointcut calc_aux_dates(
??FreePeriods, 7AuxDate)
onchange (?7Attendees, 77FreePeriods) :

Figure 10: AppointmentOptimizer

The free_ periods today pointcut binds the list
meta variable 77FreePeriods to ranges of free time slots
in the schedule of the other attendee. Finally, the
calc_aux_dates pointcut compares these time slots
with the local date book and binds 7AuxDates to all
possible auxiliary dates. If no auxiliary date can be
found the pointcut fails.

Figure 11 shows the asynchronous advice which
composes the pointcuts in its pointcut designator. It
uses the forall predicate to bind all attendees and
their auxiliary dates to the 77Attendees, and 77Al-
lAuxDates meta variables??. All defined pointcuts
are composed to one logic expression whereby the
free_periods today pointcuts is evaluated remotely
at the attendees devices. If the pointcut succeeds the
attendees and auxiliary dates are bound and mapped
to arrays of Java objects in the advice body. Now a
GUI is opened and the user is told about the possible
schedule changes.

8 Related Work

Most context-aware platforms concentrate on the con-
text management providing a well-defined interface
for the application. The application anticipates the
interfaces to the context management and is there-
fore itself context-aware. One example is the SOCAM
approach[17] by Gu et al., an approach built on top
of the OSGi framework. Context reasoning is carried

22The semantics of the findall predicate is ajar, but slightly
different from the semantics known from Prolog.

It binds the bindings of the first argument variables to the
list of variables of the last argument instead of binding one list
of bindings for all variables.

onchange (?7Attendees) :
findall([?Attendee, ?7AuxDates], (
appointment (?Appm) &&
dates_next_days(7Appm) &&
element (7Appm, attends, 7Attendee) &&
nearby(7Attendee) &&
ditrios(7Attendee, 7DitriosURI) &&
remote (?DitriosURI,
free_periods_today(??FreePeriods)
) &&
calc_aux_dates(
??FreePeriods, ??7AuxDates),
[?7Attendees, 77Al1AuxDates]),
not (empty(?7Attendees))
{

Person[] atts ??7Attendees;
Appointment[] auxs = ??7AllAuxDates;
openGUI (atts,auxs) ;

}

Figure 11: onchange advice

out with a rule system based on first-order logic. The
context model is described with the help of the Web
Ontology Language OWL[18]. Automatic adaptation
of the program based on the current context state is
not supported.

Dargie et al. [19] introduced an approach for the
analysis and modification of event traces based on
context information. This work assumes that all op-
erations are carried out via a central event system.
Jadabs[20] is an OSGi based AOP approach for dis-
tributed services. Services can be adapted at runtime
with the dynamic aspect language Nanning. Jadabs
does not propose an context model and only considers
the local state in its join points.

Fuentes et al. [21] propose a ambient intelligence
DSL for architecture level adaptations. Adaption
strategies can be written which change the application
at runtime. The analysis of the context is carried out
with an extension of the OWL which provides first-
order logic analysis. The main differences to our ap-
proach are, that the system only reacts on concrete
events and executes all analysis locally on the current
system.

[22] introduce a context-aware aspect language.
Here it is possible to adapt the advice execution to
the runtime state of the program. A Java-based con-
text model is proposed and the pointcut language of
AspectJ is extended to bind and evaluate the current
context. Their concept is a pure language level ap-
proach.

The Ditrios architecture provides an exception han-
dling mechanism by means of aspects. Architecture
level exception handling for distributed services has
also been proposed by [2]. The DeFEwvolve platform
provides an exception handler concept with user inter-
action to look up service alternatives on failure. The

10

handlers are defined in a XML description which is
also used for the service composition. Although the
means are different the possibilities are similar. The
aspects can used for automatic reconfiguration or in-
corporate the user into the selection process.

9 Conclusions and Future Work

Working with service-oriented architectures in general
and OSGi in particular implies dealing with middle-
ware concerns, more than ever if the involved services
are highly dynamic. However, the developer should fo-
cus on the business logic and not care about these mid-
dleware details. Changing the application depending
on context changes usually requires a separate context
management system which must be manually queried.

This paper presented the service-oriented architec-
ture Ditrios and the generic aspect language CSLog-
icAJ for the Ditrios architecture which liberate the
developer from considering middleware concerns and
context-awareness in their services. They can use an
aspect languages which uses a unified logic language
to query services, contexts and the program execu-
tion. The language can consider different contexts, lo-
cal and remote context, at the same time making com-
plex consideration of the environment possible. And,
the aspect language provides the means to reconfigure
service composition, by controlling all services refer-
ences.

Not all components of the presented approach are
implemented, yet. The Ditrios platform, LogicAJ
and local context management are implemented and
will be integrated in the future. Several optimization
problems are still to solve. The reevaluation of the
pointcut expressions in asynchronous advice should
be optimized in future, since the complete, global
reevaluation is expensive. Techniques from deductive
databases, like the view update [23], could be facili-
tated which only calculate the difference between for-
mer and current query evaluation. Since the generic
parts in CSLogicAlJ are expanded at runtime the re-
compilation of the code can lead to an enormous run-
time overhead. We developed caching strategies to
avoid this overhead, but we still have to evaluate the
solutions.

References

[1] J. Klein F. Leymann D. Roller S. Thatte

F. Curbera, Y. Goland and S. Weer-
awarana, “Business process exe-
cution language for web services,

http://dev2dev.bea.com/techtrack/bpeldws.jsp”.

2]

131

4]

[5]

(6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Sascha Alda and Armin B. Cremers, “Towards
composition management for component-based
peer-to-peer architectures”, in Proceedings of
the Workshop Software Composition (SC 2004),
April 2004, pp. 42 — 58.

“Aspect-oriented software development”,

http://www.aosd.net.

Robert C. Martin, “Design Principles and Design
Patterns”, June 2004.

Martin E. Nordberg III, “Aspect-oriented depen-
dency management”, pp. 557-584.

Shigeru Chiba and Rei Ishikawa, “Aspect-
oriented programming beyond dependency injec-
tion”, in ECOOP, 2005, pp. 121-143.

D.L. Parnas, “On the criteria to be used in de-
composing systems into modules”, Communica-
tions of the ACM, vol. 15, no. 12, pp. 1053 — 1058,
December 1972.

OSGi Alliance, Listeners Considered Harmful:
The “Whiteboard” Pattern - Revision 2, August
2004.

OSGi Alliance, OSGi Service Platform Core
Specification - Release 4, August 2005.

OSGi Alliance, OSGi Service Platform Service
Compendium - Release 4, August 2005.

Sun Microsystems, Inc., Java Remote Method In-
vocation (Java RMI).

W3C, Web Services Description Language
(WSDL), March 2001.

Andreas Zimmermann, Andreas Lorenz, and
Marcus Specht, “Applications of a context-
management system”, in CONTEXT 2005, 2005,
pp. 556-569.

Tobias Rho and Giinter Kniesel, “Uniform gener-
icity for aspect languages, technical report iai-
tr-2004-4, computer science department iii, uni-
versity of bonn”, in Uniform Genericity for As-
pect Languages, Technical Report IAI-TR-2004-4,
Computer Science Department I1I, University of
Bonn. Dec 2004.

Giinter Kniesel and Tobias Rho, “A definition,
overview and taxonomy of generic aspect lan-
guages”’, L’Objet, vol. to appear, 2006.

W. F. Clocksin and C. S. Mellish, Programming
in Prolog, Springer-Verlag New York, Inc., New
York, NY, USA, 1987.

11

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Tao Gu, Hung Keng Pung, and Da Qing Zhang,
“Toward an osgi-based infrastructure for context-
aware applications”, in IEEE Pervasive Comput-
ing, vol. 03, no. 4, Oct-Dec 2004.

C. Welty M.K. Smith and D.L. McGuin-
ness, “Owl web ontology language refer-
ence”, http://www.w3.org/TR /owl-ref, Feb.
2004, World Wide Web Consortium (W3C) rec-
ommendation.

Waltenegus Dargie, Olaf Droegehorn, and Klaus
David, “Sharing of context information in perva-
sive computing”, in In Proc. of the 13th IST Mo-
bile and Wireless Communication Summit, June
2004, pp. 839 — 843.

Andreas Frei, Jadabs - An Adaptive Pervasive
Middlerware Architecture, No. 16273, ETH, Oc-
tober 2005.

Fuentes and Jimenez, “An ambient intelligent lan-
guage for dynamic adaptation”, ECOOP Work-
shop OT4AmlI, 2005.

Eric Tanter, Kris Gybels, Marcus Denker, and
Alexandre Bergel, “Context-Aware Aspects”,
in Proceedings of the 5th International Sympo-
stum on Software Composition (SC 2006) LNCS,
Springer-Verlag., March 2006.

Andreas Behrend and Rainer Manthey, “Up-
date propagation in deductive databases using
soft stratification”, in ADBIS 2004, Budapest,
Hungary.

