
Programming for Context-based Adaptability
Lessons learned about OOP, SOA, and AOP

Holger Mügge1, Tobias Rho1, Daniel Speicher1, Pascal Bihler1, and
Armin B. Cremers1

Institute of Computer Science III, University of Bonn
Römerstr. 164, 53117 Bonn, Germany

{muegge|rho|dsp|bihler|abc}@iai.uni-bonn.de

Abstract. Context-sensitive applications are a key issue to exploit the
benefits of mobile devices. For many applications planned adaptation
starts to become status quo. However, the huge potential of adapting to
unanticipated situations still remains a research issue. The general ques-
tion “how to program for adaptivity” in a reasonable way is not answered
yet. Current methods relying on statically typed languages either intro-
duce a high level of complexity, or rely on detailed anticipation, or both.
First, we describe how a statically typed Object-Oriented language can
with the help of some design patterns to cope with basic requirements
of adaptivity. Then, we show how adopting a Service-Oriented Architec-
ture (SOA) can leverage coding. Finally, we present the Aspect-Oriented
(AOP) language CSLogicAJ (compatible to AspectJ) which includes a
logic notation and direct access to context data. We discuss how AOP on
top of SOA can help to reduce the level of anticipation of runtime adap-
tation. Finally, we discuss which of the main obstacles can be overcome
with our approach and what remains to be tackled in the future.

1 Introduction

Mobile applications running on a portable devices are the natural setting for
context sensitive applications. Loosely attached to the user’s clothing the device,
together with its owner, is exploring the world and gets confronted with a lot of
different context situations. Adapting mobile applications to predefined context
changes in order to support the nomadic user in his everyday actions is good
practice by today. For example mobile phones can change their signaling method
based on the currently selected workspace profile.

But with adapting to different predefined context situations just half the bat-
tle is won. Often, the user and his device are confronted with new and unforeseen
situations. Adapting to such settings where just a low degree of anticipation is
given defines the challenge for context sensitive intelligence research.

As example of use, we selected a personal information management appli-
cation (PimPro) on a mobile device. The PimPro application gives its users
prompt access to exactly that part of their personal data which is relevant for the

current context. To determine currently relevant documents it applies context-
dependent filtering and sorting strategies on typical business data like e-mail,
links to websites, meeting minutes, or financial data.

The remainder of this paper is structured as follows: In section 2, we outline
the basic requirements for our adaptation scenario and deduce general condi-
tions from this special case. In section 3, we discuss a purely object-orientated
approach to meet these requirements, using different design patterns. In section 4
we show how a service-oriented architecture can be applied to improve these solu-
tions and discuss the remaining limitations. To overcome these, we introduce the
benefits of aspect-orientated development in section 5 by discussing two concrete
aspect-oriented solutions for the adaptation scenario. Finally, section 6 gives a
short summary and explains briefly our future plans.

2 Requirements

A Scenario for Context-Sensitive Adaptation In our scenario a business user
visits a trade fair. He keeps a lot of documents on his mobile device and manages
them by different applications, as illustrated in figure 1. On the fair he will be
engaged in meetings and presentations and thus needs an efficient way to access
the relevant documents at each particular event.

© 2006, Institut für Informatik III, Universität Bonn Folie 3

Tool without Adaptation – Screenshots

Fig. 1. Simple document management tools for mail, minutes and bookmarks.

When he enters the fair and is about to be engaged in meetings and ne-
gotiations, his device recognizes the new situation automatically and scans for
adequate adaptations. The fair organization offers some special services for docu-
ment management support: a document indexing service, which creates an index

for searching and classifying documents; a vicinity explorer calculating the fair
stands closest to your current location; an index matcher, which determines how
similar two index lists are; a sorter, a filter, and a tree flattener for list data
manipulation. These services can be combined to offer a real benefit for the user
while he is on the fair, as shown in figure 2.

Local
Documents

Closest
Stands

Mail
Client

Notes
Client

Bookmark
Manager

Fair
Map

Stand
Index
Lists

Indices for
Documents

Document
Classifications

Tree
Flattener

Sorter

Filter

Indexing Index
Matcher

Vicinity
Explorer

Context
incl.

Location

1

2

3

4

4

4

Fig. 2. Combining services leads to a beneficial adaptation

These adaptations work together in the following way: First, the indexing
service creates for each locally stored user document a (potentially weighted)
index characterizing the content of the document. Second, the vicinity explorer
calculates the distances between the user and all stands on the fair (given by the
Fair Map) and determines which stands are close to the user’s current position.
In the third step for each of the stands in the user’s vicinity the document set
gets ordered with respect to their relevance. Therefore, each exhibitor provides
an index list describing his company (Stand Descriptions). The index matching
service estimates the relevance of each document to a stand by comparing both
index lists and though produces a document classification. Finally in step four
the relevance classification for the documents are used to display them in a more
convenient way. Therefore three services can be used for sorting, filtering and
flattening document entries in list- and tree-like structures. Figure 3 illustrates
the adapted client tools, providing prompt access to those documents relevant
for the closest stands.

Requirements Elicitation What requirements can be elicitated from the given
scenario? First, the adaptation should be done at runtime, since the user will
probably have his tools already started before he enters the fair. Second, the

Fig. 3. Adapted tools provide prompt access to currently relevant documents.

situation should be recognized automatically, since the user will not manually
specify each situation change without knowledge about a possible benefit through
adaptation. Third, the services popping up at the fair, should be detected au-
tomatically, since a busy user won’t be able to scan manually for new services
every now and then. Fourth, we assume that there will be a large cloud of services
offered. The user needs support for selecting appropriate services. This holds for
services that are separately useful (e.g. the vicinity explorer service might adapt
a map application to show stands), in cases where it is tedious to find the service
in a long list. But it becomes definitely necessary when the adaptations bene-
fit is provided by combinations of services as shown in our scenario. Fifth, the
adoption of new services must be tightly integrated into the functionality of the
user’s applications. In our example service adaptations are spread across three
different client applications, and more complex scenarios are easy to think of,
i.e. adaptation should allow for cross-cutting changes.

General Requirements for Context-Sensitive Adaptivity Most of the requirements
deduced from the scenario in the last sections, can be abstracted to a general
form and occur frequently in context-sensitive settings. Additionally we found
some basic technical requirements regarding the tight integration of the adapta-
tion into the existing applications. I.e. we need to care about replacing existing
functionality with more appropriate alternatives, we must allow for extending
the set of given functionality by new elements, and finally we also need to be
able to remove functionality, which has been added before. The following list
summarizes the requirements and gives a first short comment about how we are
going to accomplish each of them. Thus, we tackle

– replace existing functionality by enhancing the strategy pattern
– enhance given functionality by enhancing the decorator pattern
– add new functionality by enhancing the visitor pattern (not in this paper)
– adaptation at runtime by enhancing design patterns, using SOA, and apply-

ing runtime aspect weaving
– automatic service detection using a service-oriented architecture
– cross-cutting adaptations by aspect quantification
– minimizing anticipation by applying aspects and thus introducing details

about the variants at runtime
– automatic detection by a context management system based on logic descrip-

tions and reasoning (not in this paper)
– support for service retrieval by applying IR techniques combined with onto-

logical descriptions of services and the context (not in this paper)

3 Pure Object-Orientation — Patterns for Adaptivity

On our way towards development tools for adaptive software, we start with pure
object-oriented methods. Design patterns are a well-known means for introducing
flexibility to software (c.f. [1]). For the field of product line engineering Svahnberg
discusses in [2] several patterns for introducing systematic variability. Hence we
investigated what could be achieved applying appropriate patterns.

Design patterns mostly address statical flexibility, i.e. adaptivity during the
software evolution process. Although this is fundamentally different to our set-
ting, where adaptations occur at runtime, some selected patterns seem to be a
good starting point. In particular we applied the strategy pattern to exchange
functionality and the decorator pattern to enhance functionality at runtime.

The strategy pattern provides an infrastructure for dynamically exchanging a
certain functionality at runtime. While exchanging strategies (and thus func-
tionality) at runtime is supported by the pattern, two problems remain: first, we
need to be able to detect strategies and load them at runtime. The latter is rela-
tively easy to achieve by extending the strategy pattern with a dynamic strategy
repository that is able to load new strategies at runtime and offer them to the
business logic part of the application. Second, detecting available strategies and
in particular discovering appropriate adaptations remains a complex problem in
its own right, calling for abstractions on the architecture level of the software.

Enhancing functionality by decorators is even more complicated. One scenario
is that a decorator wraps a given object so that calls to its methods will first
be executed by the decorator, potentially specifying additional behavior before
calling the original object. The decorator could also specify to enhance the be-
havior after the original object’s functionality has been executed or even replace
it completely with new functionality.

At least when multiple decorators come into play, the client who configures
the decoration of objects, needs detailed knowledge about possible or reasonable

combinations. This is in a static setting feasible since flexibility then means
to have the option of convenient re-specification of decorator combinations at
development-time. In our setting, we need a dynamic decorator in the sense
that we can robustly add or remove decorators to objects at runtime without
explicitly taking care of permitted combinations.

We achieved this by extending the decorator pattern with a configuration
logic that automatically cares for reconfiguration of the object’s decorations
when it is changed. This basically means that combination of decorators are
self-managed by an "intelligent"decorator manager.

Further patterns can be applied enhancing adaptivity: we used a variant of
the adapter pattern to allow for flexible connections between not quite fitting
interfaces and the observer pattern for dynamically recombining functional units.
The visitor pattern could be used to allow adding new functionality at runtime
without changing class code or compilation.

While design patterns can provide for basic adaptivity, relying on them as the
only means can not reasonably cope with the requirements of context-sensitive
adaptivity. For example, cross-cutting concerns will lead to a proliferation of
similar structures within the whole software and introduce a high level of main-
tenance complexity. Detection of available and discovery of appropriate adapta-
tions will lead to very specific implementations with a high level of complexity.
Hence, using separate abstractions for coping with these issues seems appro-
priate, as we describe when using services in section 4. The general problem of
aiming for least anticipation can also not be reached solely by applying patterns.
According to this, we use Aspect-Orientation as discussed in section 5.

4 SOA and Object-Orientation - Patterns for Adaptivity

Service-oriented architecture simplifies dynamic adaptation because components
are low coupled. The use of a component, like viewer categorization or tree dec-
oration, must be completely anticipated in a pure OO solution. A configuration
class is necessary to organize the dynamic change of decorations and catego-
rizations. In a service-oriented approach a service registry is responsible for or-
ganizing the available services. Service Providers register services and Service
Consumers request services. Figure 4 depicts how this architecture can be used
to implement a Strategy Pattern. Consider the components Context, Strategy I
and Strategy II. The Context component requests a service IStrategy which is
implemented by services registered by the component Strategy I and Strategy
II. We call code that responsible to select one or several strategies based on the
availability and properties tracking code.

The adaptations discussed in the reminder of this paper are based on the
service-oriented platform OSGi [3]. OSGi (open services gateway initiative) is
a Java based component platform. It’s purpose is mainly the management (in-
stall, start, stop, update, uninstall) of the components running on this platform.
These standardized components are called bundles, the platform is named frame-
work. Bundles can be installed and uninstalled at run time. They are capable to

Strategy IIStrategy II

Strategy IStrategy I

ContextContext

tracking code responsible for the
strategy change

IStrategy Service
Registry

register
service

requests
service

Service ProviderService Consumer

Fig. 4. Strategy Pattern in a service-oriented architecture

dynamically provide services and use services of other bundles, and statically im-
port other bundles and export own interfaces. Dependencies are dissolved upon
installation by the framework.

Service-oriented version of the strategy pattern We used the strategy pattern
in the PimPro application to adapt the document categorization of all three
applications: Notes-, Mail- and Bookmarks-Tool (c.f. figures 1 and 3). All three
applications play the role of the context in the strategy pattern as depicted in
figure 4 and are implemented as bundles requesting a DocumentCategorization
service. We implemented three concrete strategies: a vicinity categorizer indi-
cating that a document is relevant for the closest stand, a gradual categorizer,
reflecting the distance of the next stand for which the document is relevant , and
a constant categorizer yielding the same category for all documents.

To be able to react to changes concerning the availability of services, service
tracking code was introduced to all bundles. The user is responsible for activating
and deactivating bundles containing categorization services. Only if no service
is available the default service is activated, namely the constant categorizer.

Service-oriented version of the decorator pattern The dynamic tree decoration
also takes advantage of SOA. Here the configuration of the bookmark tree deco-
rator is realized via services. All available tree decorators are tracked and added
to the dynamic decorator implementation in the Bookmarks View component.
The general concept of a decorator pattern as described in section 3 is preserved.

Limitations Several downsides remain. Concerning the strategy solution the ne-
cessity of tracking code itself is problematic. The selection criteria of the concrete
service still is anticipated in the tracking implementation. For a context depen-
dent selection the bundles must be context-aware. This is a strong restriction
since a bundle should be usable in arbitrary settings.

The main limitation of the decorator solution is the anticipation in the Book-
marks View component. Every service request that should be decorated must
be extended with the relatively complex dynamic decorator pattern structure.

For both patterns an inherent OSGi problem, the uncertainty about the
service reference, must be taken into account in the concrete implementation.

Categorization

BookmarksModel

TreeContentDecorator
TreeDecorator

Flattening

TreeDecorator
Enriching

user based selectionAnticipated Decoration

Bookmarks
View

BookmarksModel

Bookmarks
Model

Fig. 5. The anticipated decorator pattern for the bookmark tree decoration.

While using the reference and passing it to the internals of the component,
the service may become unavailable. This problem must be anticipated by the
programmer. There is no means in OSGi to replace a service reference on the
platform level.

5 SOA and Aspect-Orientation - Patterns for Adaptivity

Generic aspect orientation (c.f. [4,5]) has shown to simplify and improve the
implementation of most of the GoF design patterns [1]. Here we show how aspect-
oriented techniques combined with a context-aware service-oriented architecture
can even go further. With the help of service aspects [6] we are able to remove
most of the tracking code - and thereby the anticipation of possible contexts -
from the components.

Service aspects enable replacement or decoration of services and can refer
to arbitrary context information. By this service tracking can be moved to the
architecture level making dynamic changes of services transparent for the ap-
plication. The same is true for the dynamic decorator preparation described in
section 3. Bundles are only responsible to specify their service dependencies via
service requests. The service aspects organize the reconfiguration of the compo-
sition.

The following section gives a short introduction to the aspect language CS-
LogicAJ [6], section 5 and 5 illustrate how the language enables dynamic strategy
change and decoration.

CSLogicAJ (Context-aware Service-oriented LogicAJ) is an aspect language for
the SOA framework Ditrios [6,7] which is based on OSGi [8]. This section only
sketches the main concepts of the language. A thorough introduction can be
found in [9]. An advice is composed of two parts: a selection part, selecting
points in program execution, and a code body being executed at the selected
points. Dynamic aspects enable unanticipated adaptation cross-cutting a series
of program parts. Our approach comes with a highly flexible and expressive
pointcut language which incorporates external context information in the adap-
tation steps. The context-awareness is built on a context management system
which is part of Ditrios. Context information like hardware sensors, profile in-
formation and service tracking information is attachable via context provider

services and is queryable in CSLogicAJ’s pointcut language. Context depended
adaptation - in our terms - means adapting services by calling weaving processes
triggered through the change of context information like e.g. heart rate or GSM
position.

The CSLogicAJ language differentiates between two advice concepts:

Synchronous advice is applicable on the service message level. Such advice
intercept calls to services taking the program flow and available context in-
formation into account. The commonly known before, after or around advice
can be used to execute additional code. Furthermore, transparent (re)binding
and (re)composing of services is possible due to the proxy architecture. Syn-
chronous advice corresponds to the common dynamic weaving.

Asynchronous advice react exclusively on context changes indicated through
context providers. Such advice is comparable to event-condition-action (ECA)
rules known from relational databases. The event is the change of the con-
text, the condition is represented by a pointcut and the action by the ad-
vice code. Asynchronous advice does not need program-execution pointcuts.
The pointcut expression is reevaluated every time the context information
changes. These advice constructs are marked with the keyword onchange.

Dynamic Strategy Change This example realizes the dynamic change of a cate-
gorization service based on user preferences. Lets assume that a context provider
is available which represents the user preferences on a certain device. Since the
context management is not in the focus of this paper we skip the definition and
registration of the provider.

Once the context provider is registered a pointcut userPreference(Key, Value)
is available via the context management system. Based on this pointcut and two
more predefined pointcuts it is now possible to define a dynamic strategy change
via CSLogicAJ aspects. Figure 6 depicts how the CategorizationAspect selects
one of the available categorization types based on the user preferences. If the
preferences or the set of available services change the aspect selects a different
categorization service. If no service is available the default service is selected.

The onchange advice in Figure 7 facilitates two predefined pointcuts to
query currently available services and requests for services. The pointcut ser-
viceAttr(Service, Key,Value,Type) provides access to the attributes of all avail-
able services. The pointcut serviceRequest(Request, Interface, Attributes) pro-
vides access to all service requests. The advice strategyChange is re-executed
when the aspect is activated and every time at least one of the advice parame-
ters (?Service or ?Category) changes. The disjunction in the pointcut descrip-
tion ensures that if the user preferences can not be fulfilled the default service
is selected. The advice body accesses the Ditrios facade via the built-in field
ditrios.

The setActiveService method performs the actual strategy change. All re-
quests for the services with interface IDocumentCategorization that were bound
to ?Req are set to the selected service ?Service. Here the crosscutting applica-
tion of the aspect on all bundles becomes evident. This change is transparent
for the using bundles. They keep their references to requested services.

Categorization
Gradual

Categorization
Gradual

Categorization
DEFAULT

Categorization
DEFAULT

Categorization
Vicinity

Categorization
Vicinity

BookmarksBookmarks

Categorization

Categorization

MailClientMailClient

NotesNotes

Categorization

selected by
Categorization

Aspect

Context
Management

User
Preferences

based on

Fig. 6. Aspect-oriented Strategy Pattern based on user preferences.

Dynamic Service Decoration is here illustrated with the TreeFlatteningAspect.
In the PimPro example this aspect is responsible for flattening the model of
the bookmarks model. This is realized by around advices on all TreeContent-
Provider services like the model of the Bookmarks applications, see Figure 8.
Every method call to the Bookmarks model is intercepted and modified to flat-
ten the tree structure.

The aspect implementation is shown in Figure 9. We concentrated on the
most relevant advice that intercepts the getElements(Object) method. The tree
content provider object and its arguments are bound in the pointcut expres-
sion. The helper method getAllElementsRecursively retrieves all elements of the
provider and returns a list. The list is converted to an array and returned as the
flattened element list. The proceed call represents the delegation to the original
service method or the next advice that was woven, e.g. by another aspect that
decorates the tree.

If more than one decorator aspect is woven the order of weaving is important.
E.g. an aspect that adds new bookmarks to the tree must be executed before
the flattening takes place. Otherwise the result is a mixture of flattened original
bookmarks and a new tree of added bookmarks. A first solution to this problem
is explicitly annotating the dependencies between the aspects.

Limitations The implementation of bundles becomes much easier with AOP but
in concrete adaptation scenarios anticipation is still needed in the bundles. The
strategy change in Section 5 is only possible if the service change is possible at
any time. We proposed a lightweight transaction concept in [6] to overcome this
problem, which results in the necessity to define transaction start and end points
in the bundle.

The ordering problem makes parallel use of independently developed aspects
error prone. We are currently exploring a more sophisticated solution than ex-
plicit ordering using semantic annotations and dependency inference.

Still, the aspect-oriented solution is more flexible and extensible and does
not require change the application bundles in many cases.

aspect CategorizationAspect {
onchange strategyChange(?Service, ?Category) :
userPreference("CategorizationKind",?Category) &&
(

serviceAttr(?Service,"CategorizationKind",?SelCategory,?Type) &&
equals(?Category, ?SelCategory)

) || (
!serviceAttr(?Service,"CategorizationKind",?SelCategory,?Type))&&
equals(?Category,"DEFAULT")

) &&
serviceRequest(?Req,"org.cs3.csi.IDocumentCategorization", ?_)

{
try {

ditrios.setActiveService(?Req, ?Service);
} catch(Exception ex) {

throw new RuntimeException(ex);
}

}
}

Fig. 7. Dynamic strategy change

TreeFlattening
Aspect

TreeEnriching
Aspect

Categorization

BookmarksModel

Bookmarks
View

BookmarksModel

Bookmarks
Model

Fig. 8. Aspect-oriented decorator pattern for the bookmark tree decoration

6 Summary and Outlook

This papers addresses the question how adaptive software for context-sensitive
scenarios could be developed based on a statically typed language like Java or
C++. We first outlined a scenario and deduced the most crucial requirements
this kind of software faces. Solely relying on Object-Oriented abstractions can not
reasonably cope with the problems of not fully anticipated runtime adaptation,
detecting, discovering and integrating adaptations. These requirements call for
more sophisticated abstractions, as provided by a Service-Oriented Architecture.
As we illustrated rich adaptation frequently will make cross-cutting changes
necessary. Aspects can cover this issue to a large extend. They address also the
general issue of reducing the level of needed anticipation.

We are currently porting a more complex scenario to the described technique.
In this case further reduction of anticipation is aimed at. We therefore plan
to integrate an ontological description of services and context for systematic
retrieval of appropriate services.

aspect TreeFlatteningAspect {
Object[] around flattenElementTree

(ITreeContentProvider provider, Object inputElement) :
execution(* ITreeContentProvider.getElements(Object)) &&
target(provider) &&
args(inputElement)

{
List result = getAllElementsRecursively(provider,

proceed(provider,inputElement));
return result.toArray();

}
// ... around advices that intercept the other
// methods of ITreeContentProvider and return
// null or false for the other methods

}

Fig. 9. Bookmarks Flattening Aspect

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
(1994)

2. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques: Research articles. Softw. Pract. Exper. 35 (2005) 705–754

3. OSGi Alliance: OSGi Service Platform Service Compendium - Release 4. (2005)
4. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectj.

In: OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, New York, NY, USA,
ACM Press (2002) 161–173

5. Rho, T., Kniesel, G.: Independent evolution of design patterns and application logic
with generic aspects - a case study. Technical Report IAI-TR-2006-4, Computer
Science Department III, University of Bonn (2006)

6. Rho, T., Schmatz, M., Cremers, A.B.: Towards context-sensitive service aspects,
workshop on object technology for ambient intelligence and pervasive computing,
in conjunction with 20th european conference on object oriented programming
(ecoop 06), july 3-7, nantes, france (2006)

7. Ditrios: Webpage, http://www.ditrios.org. (2006)
8. OSGi Alliance: Listeners Considered Harmful: The “Whiteboard” Pattern - Revi-

sion 2. (2004)
9. Rho, T., Kniesel, G.: Uniform genericity for aspect languages, technical report iai-

tr-2004-4, computer science department iii, university of bonn. Technical Report
IAI-TR-2004-4 (2004)

10. Fortier, A., Gordillo, S., Rossi, G.: Engineering pervasive services for legacy soft-
ware. SEPS Workshop at IEEE International Conference on Pervasive Services
2006 (ICPS’06) Lyon (2006)

