
Integrating Aspect-Orientation and Structural Annotations
to Support Adaptive Middleware

Holger Mügge
University of Bonn
Bonn, Germany

muegge@cs.uni-bonn.de

Tobias Rho
University of Bonn
Bonn, Germany

rho@cs.uni-bonn.de

Armin B. Cremers
University of Bonn
Bonn, Germany

abc@cs.uni-bonn.de

ABSTRACT
To anticipate or not to anticipate — that is the question, re-
garding adaptive middleware in the area of ubiquitous com-
puting. Anticipation can guarantee that both the adapted
and the adapting component work together safely, but it lim-
its the scenario space to some predictable well-known cases.
This holds even more when statically typed languages are
used, as we assume here. A second problem is a seman-
tic gap between the business logic that triggers the adapta-
tion and the technological demands of the adaptation that
must be solved on the implementation level. We discuss
current approaches and describe a new approach combining
aspect-oriented programming with structural metadata to
cope with both problems. An example illustrates how our
approach will work in practice.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Adaptable architec-
tures; D.2.12 [Interoperability]: Interface definition lan-
guages

1. INTRODUCTION & GOALS
Mobile devices are widespread and become more and more

powerful. We expect their capabilities to resemble today’s
desktop computers in the near future. What makes them
really special is that they accompany their users in all every-
day actions and are used in a vast variety of very different
situations. Hence, context-sensitivity and dynamic adapta-
tion to the current context are of increasing importance for
software developers.

Our goals are (1) to reduce anticipation while preparing
adaptive software, (2) to help bridging the semantic gap be-
tween business logic and technical solution details, and (3)
to ease development of adaptive software. The solution we
propose in this paper assumes that a statically typed lan-
guage like Java is used.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MAI March 20, 2007 Lisbon, Portugal
Copyright 2007 ACM 978-1-59593-696-7/07/0003 ...$5.00.

2. PROBLEM ANALYSIS

2.1 Conflicting Forces
We see two main causes that make dynamic context-driven

adaptation difficult. They can be represented by two pairs
of conflicting forces and are visualized in figure 4 which de-
picts our suggestion for an overall workflow for engineering
adaptive software.

Unpredictability vs. Anticipation: Developers of ba-
sic applications can not predict in what situation the users
will appreciate which adaptation. Even though some adap-
tation use cases are well-known, the major part of potential
adaptations can not be predicted, as we discussed in [7]. On
the other hand, to ensure safe adaptation, both the devel-
opers of base applications and those of adaptations tend to
anticipate as much as possible. Figure 4 shows this in terms
of dependencies.

Technical Precision vs. Business-Logic Semantics:
In order to be robust and safe, runtime adaptation of soft-
ware calls for technically precise description of the involved
components, e.g. in form of interface definitions. On the
other hand the need for adaptation is driven by semanti-
cal relations between concepts at the business-logic level.
Hence, we see a semantic gap between the triggers of adap-
tations (in terms of situation changes) and their realization
(in terms of program code). This is shown in figure 4 as the
y-axis.

2.2 An Example Scenario
In our scenario a business user visits a trade fair. He keeps

a lot of documents on his mobile device and manages them
by different applications.

When he enters the fair and is about to be engaged in
meetings and negotiations, his device recognizes the new
situation automatically and scans for adequate adaptations.
The fair organization offers some special services for docu-
ment management support: An indexing service which clas-
sifies all documents on the mobile device by associating them
with the different company stands on the fair. A Document
Filter service highlights and sorts the documents based on
this classification for each application running on the device.
Figure 1 gives an overview of the involved applications and
services. A more detailed description is given in [7].

2.3 Requirements
The settings of context-sensitive adaptations impose the

following requirements, we address in this paper.
The abstraction shared between both adapted and adapt-

Fair SystemMobile Device

Local
Documents

Stand
Descriptions

Indexing Index
Comparator

Document
Filter

Mail Client etc.

stored as pimpro-structure.pdf

Indexing

Figure 1: Adapting mobile PIM applications

ing components should support both developers. The ab-
straction should be flexible enough to allow for indi-
vidual coding styles when they fulfill the functional require-
ments. The additional effort for the developers should
be low and tightly integrated with their usual development
environment. For the application developer it is important
that he can check, that his code adheres to the rules of
the common abstraction. It should be precise enough to
allow the developer of adaptations to rely on it and imple-
ment the adjustment of his adaptations.

2.4 Integrating an Indexing Service
This section discusses how our approach makes a set of

different document containers (notes tool and mail client)
accessible for an indexing service, without anticipating this
concretely in advance.

The indexing service needs access to the textual content
of all documents managed by these tools. For the notes tool
this is relatively easy since each stored note provides the
methods getContent() and getHeading(), both returning a
String-typed part of the note’s content. The UML class
diagramm shown in figure 2 shows the relevant part of the
involved types.

+ getNotes() : Note[]

contentTypeProvider

documentContainer

Structural Metadata

contentContributor

document

Figure 2: Accessing content of a notes tool

The class NotesTool which aggregates all documents is
annotated with the documentContainer role. contentCon-
tributor denotes the methods returning document content.
The documentPath role specifies via which methods the con-
crete documents can be reached. Analogously contribution-
Path annotates the access to contentContributors. Both
roles are not shown in figures 2 and 3 for clarity, but listed in
table 1. If the content is not of type String the contentType-
Provider can be used to specify the type, e. g. "text/html".

For the mail client things are more complicated. Figure 3
depicts this situation as UML class diagram.

First, the content is much more distributed: each message
does not only contain the immediate content, i. e. the mail
body, but holds additional textual information belonging to
the content, namely the mail subject and other headers, like
from, reply-to etc. Furthermore, the messages themselves
are not stored in one single container. The inbox and the
drafts folder behave differently and are implemented as dif-
ferent types. Hence, the content of all documents accessible
by the mail client are distributed over objects of different
classes.

Second, content is typed: mails can not only contain plain
text but their content might be of different type (cf. MIME
types) and may be structured (e. g. the Multipart type
in the JavaMail API). Accessing the textual content there-
fore has to take this type into account and must be re-
stricted to textual parts of the mail. Therefore, each con-
tentContributor has associated a contentTypeProvider. This
is given either statically as return type of the content access-
ing method (as in the case of the notes tool) or through an
associated method providing the type dynamically.

documentContainer

Structural Metadata

contentContributor

document

contentTypeProvider

Figure 3: Accessing content of a mail client

This little variation can be moved into the structure schema
itself. Thus, for each annotated content contributor that
does not have associated a annotated contentTypeProvider,
a method providing the constant type (e. g. "String" for
notes) is generated at development time. Hence the base
application developer does not have to deal with it. The
adaptation developer does also not have to deal with these
variants and can assume that for each contentContributor a
contentTypeProvider is available and known.

Role Player
documentContainer MailClient
document Message, MessageDraft
documentPath Call chain
contentContributor Message.getContent(),

Message.getSubject(),
MessageDraft.getContent(),
etc.

contributionPath Call chain
contentTypeProvider Message.getContentType()

(generated if not annotated)

Table 1: Roles and players for mail client content

3. PROPOSED NEW SOLUTION
In our approach the developers provide means for later

adaptability by annotating semantic concepts in form of
their structural realization in the software. We explain how
this structural metadata is specified in section 3.1. These
structural annotations are used to describe what the soft-
ware actually provides, not what could be done with it,
hence anticipation can be reduced significantly. Thus, di-
rect dependency can be replaced by a weak coupling to a
commonly shared structural description.

Base Applications

Overall Engineering Workflow

Auxiliary Services

Adaptation
Development

Ontological
Engineering

Adaptation
Scenarios

depends on

time

semantic
level

Service
Development

Figure 4: Proposed Workflow for Adaptation Engi-
neering

Furthermore, structural annotations describe the adapta-
tion points on an ontological level, i. e. they use business
logic concepts for the declarations of roles and relations.
This is represented in figure 4 as "Ontological Engineering"
and it precedes the development of both services and adap-
tations (cf. "Service Development" and "Adaptation De-
velopment") in figure 4.

Adaptation developers use this conceptual information and
rely on it to access and adapt base application. In section
3.2 we describe details of Logic-AJ, which is applied to ex-
pose the structure to a middleware framework. Section 3.3
presents the workflow for our example in some detail.

3.1 Structural Annotations
We accompany the source code of the base applications

with structural annotations which in our example express
the semantics regarding content. Therefore we define a struc-
tural schema that serves like a formally defined design pat-
tern for content access in document containers. This schema
defines and applies the following roles:

The definition of the structure schema is given as an abridged
Prolog definition in figure 5 and table 1 lists all defined roles

and their players for the bookmark manager.

schema(documentContent).

role(documentContainer).
constraint(entity_type('type')).
constraint(cardinality('1')).

role(document).
constraint(entity_type('type')).

role(documentPath).
constraint(entity_type(‘method-call')).

relation(documentContainment,
[documentContainer, document, documentPath]).

constraint(cardinality('1', [2], [1])).

role(contentContributor).
constraint(entity_type('method')).

role(contributionPath).
constraint(entity_type(‘method-call')).

relation(contentContainment,
[document, contentContributor, contributionPath]).

constraint(cardinality('1', [2], [3])).

role(contentTypeProvider).
constraint(entity_type('method')).

relation(contentTyping,
[contentContributor, contentTypeProvider).

constraint(totality([1,2])).

Figure 5: Schema definition for document content

Annotating structural metadata declares roles of certain
software fragment (e. g. classes, methods or calls) and pro-
vides semantic relations between them (e. g. containment,
type-of). Based on these metadata the potential adaptation
points1 can be enabled. That is where AOP comes into play.
Based on the actual realization of a structure an aspect can
be inferred and woven into the application to expose the
adaptation points as services.

3.2 LogicAJ
LogicAJ (Logic Aspects for Java) [10, 5] is an aspect-

oriented extension of Java which enables generic definitions
of pointcuts, advice and introductions by supporting logic
meta-variables in all language constructs.

This section only sketches the main concepts of the lan-
guage. A thorough introduction can be found in [10]. Logi-
cAJ’s main construct is the aspect effect shown in Figure 6.
It provides generic variants of the before, after and around
advice known from AspectJ and generic inter-type declara-
tions of methods, fields and classes prefaced by the introduce
keyword.

Genericity in LogicAJ is enabled by logic meta-variables
which can be used uniformly in pointcuts, advice and in-
troductions to stand in place for syntax elements like types,
identifiers and parameters. The logic meta-variables share
their semantics with logic variables in Prolog. Logic meta-
variables are denoted syntactically by names starting with a
question mark, e. g. ?entity. Unnamed logic meta-variables
are indicated by an underscore (?_).

1We use the term adaptation point here as a specific form
of variation points

[introduce|before|after|around] <name>(<parameters>):

<pointcut−expression>
{

[<advice−body> | <introduction−body>]
}

Figure 6: Syntax of LogicAJ’s generalized aspect
construct.

3.3 Structural Annotations & AOP Combined
In the following we sketch the steps at development and

run-time to use structural annotations and AOP in our ex-
ample scenario.

The first three initial steps are independent of the de-
velopment of a concrete component. They enable runtime
adaptations which make reference to the described structure.

a) A structure schema for a certain concern is developed.

b) Java interfaces are modeled which represent the struc-
ture at runtime. We call these passive structure inter-
faces, because they only provide access to the struc-
ture.

c) Generic aspects are defined which statically weave in
glue code between annotated code structure and the
Java interfaces. All root nodes of the structure are
exposed as service, here the classes associated with
the documentContainer role.

d) Base application developer codes and annotates the
code with metadata structures.

e) From the structural metadata additional code is gen-
erated via the generic aspects defined in the first step,
that implements an interface representing the struc-
ture and provides access to the content of the docu-
ment containers respectively documents.

f) Adaptation developer codes and assumes that the base
application adheres to the structure, i. e. the interface
is exposed as a service.

g) At runtime, the structure is utilized by runtime adap-
tations represented by service aspects[11]. This in-
volves the identification of documentContainer(s) as
part of the client software as well as indexer as an
available service. As provided and required structure
interfaces are the same applicability is assumed. The
user might be asked whether she is interested in the
service (composition) or not.

This paper focuses on the static part of this work flow. The
definition and application of runtime adaptation aspects is
thoroughly described in [7]. Figure 7 gives an overview of
the whole process.

Therefore the following description will only consider step
a) to e). For the first step meta data for a structure is de-
veloped that reflects the concern to be modeled. This was
illustrated in section 2.4. We will now explicate the corre-
sponding Java interfaces for the metadata and the generic
aspects that are responsible for weaving runtime hooks to

Static aspect weaving /
code generation

Develop components
and annotate structures

Expose
as services

Classification
DEFAULT

Classification
Vicinity

MailClient

Notes

Context
Management

based on

Structural Constraints LogicAJ SOA Middleware / Service Aspects

Service aspects adapt
(compose / decorate)

MailClient

Dynamic reconfiguration /
adaptation

Exposed Services

Figure 7: The complete development work flow.
Metadata schemas are assumed to be developed be-
forehand. The left part shows the annotation step
and the AOP-enabled exposure of services which
provide access to the annotated structure at run-
time. The right part illustrates the possible use by
runtime adaptations.

these annotated code structures thereby exposing the pas-
sive structure interface.

Currently both steps have to be done manually. This is
justifiable, since we consider the definition of a generic struc-
ture description the hardest part of these preparation steps.
But, we are exploring ways to (semi-)automate both steps
in the future (cf. section 5).

Figure 8 shows on the right side and at the bottom the
Java interfaces representing the structure model. Addition-
ally it illustrates how the annotated code structures are
mapped to the Java interfaces by generic aspects. We will
now describe the sub steps in more details.

(1) At first the enclosing type of every method annotated
as a path to documents or document contributors is ex-
tended by the DocumentPath resp. ContributionPath in-
terface and returns the union of all objects returned by
the methods. (2) Each class with the document role is ex-
tended by an implementation of the Document interface. (3)
Every method pair of the roles documentContributor and
contentTypeProvider are wrapped by an implementation of
the DocumentContributor interface and is returned by the
getContributors() method of the enclosing ContributionPath
or Document interface. (4) Every class with the document-
Container role is extended by the DocumentContainer in-
terface. Since at least one method in the class represents a
path to a document the getDocuments() method is already
implemented. To make the DocumentContainer objects ac-
cessible at runtime they are exposed to the middleware as
services. The Path interfaces are only implementation de-
tails and can be ignored by in the runtime adaptation de-
veloper.

Since the whole aspect implementation of the described
steps is too large to be presented here we only show exem-
plarily in Figure 9 how step (3) is realized as an LogicAJ
advice.

The pointcut documentContribution used by this advice
represents the annotation data The around advice getDocu-
mentContributors uses the pointcut documentContribution

Generic Document
Container Interface

Export classes annotated
with the documentContainer
role as a
DocumentContainer service.

Implement interfaces
via generic advice and
introduction.

introduced by generic aspects

Concrete sub types of
DocumentContributor are
generated for every method
(pair) annotated with the
documentContributor role.

.

.

.

2

3

4

Enclosing types of every method with a path role
are extended by one of the Path interfaces

1

Application

Figure 8: Applying AOP to expose the document
structure to the SOA middleware.

to bind types with the document (or documentPath) role to
the meta variable ?document.

The pointcut documentContribution in line 1 binds the
concrete Document (or DocumentPath) classes and contri-
bution method names from the annotated code structure
to logic meta variables. We used Java 5 annotations to
represent the metadata to make the code comprehensible
for developers familiar with Java/AspectJ 5[1]. The meta
variables are used to intercept the execution of the getCon-
tributors() method of the Document or DocumentPath class
(line 8) and to call the corresponding methods in the anony-
mous class in line 14 and 17.

Similar advice constructs address the implementation of
the other interfaces parts.

Additionally, we have to care about dynamic changes in
the base application. This covers the creation of document-
Containers and changing documents or their content.

From the structural annotation a second interface is gen-
erated at development time of the base application. We
call it the active structure interface, as it provides call back
methods that will influence running adaptations later on.

We must ensure that the base application calls this inter-
face appropriately. The activation code can be provided by
static AOP right after the interface has been generated. For
example, each instantiation of a type which is annotated as
document container will call a generated addDocumentCon-
tainer() method upon the active structural interface. Anal-
ogously creation of documents or changes of their content
will call specific update methods.

The calls to the active structure interface will not result
in any actions before the adaptation occurs. Adaptations
will register as listeners against this interface.

The developers of the adaptation have to provide glue
code that reacts appropriately to events triggered by the
base application. This will typically involve passive struc-
ture interfaces or other involved base applications (e. g. an

1 pointcut documentContribution(?document,

2 ?contribution, ?contributionType) :

3 method(@DocumentContributor(?contributionType)

4 ?_ ?document.?contribution());

5

6 List around getDocumentContributors(?doc doc, ?contrib) :

7 documentContribution(?doc, ?contrib, ?contribType) &&

8 execution(List ?doc.getContributors()) &&

9 this(doc)

10 {

11 List coll = proceed();

12 coll.add(new DocumentContribution() {

13 public String getContentType() {

14 return doc.?contribType();

15 }

16 public Object getContent() {

17 return doc.?contrib();

18 }

19 });

20 return coll;

21 }

Figure 9: Generation of the DocumentContribution
instances via a generic advice.

indexing service).

4. RELATED WORK
To adapt software at runtime a common abstraction is

needed that the base applications adhere to and the adap-
tations can rely on. Here we discuss briefly some basic tech-
niques we have investigated:

Object-oriented programming provokes detailed an-
ticipation in terms of explicit interface common for base ap-
plication and adapting code. Using design patterns only
supports flexibility for anticipated adaptations. The poten-
tial of context-specific indexing will be limited.

Service-Oriented programming e. g. using OSGi cf.
[9] supports automation of adaptations but does not elimi-
nate the need for their anticipation. OSGi supports annotat-
ing services with arbitrary metadata, but this is restricted
to the component level.

Aspect-orientation can be used to weave the desired
adaptation code to fill the gap between the indexing service
and the base applications. If this is done at runtime, it can
take the current context into account and provide the appro-
priate functionality expressed in form of a suitable advice.
Most AOP approaches do not support adequate pointcut
descriptions to capture join points based on context data
and business-level semantics. The latter is tackled e. g. by
model-based pointcuts (cf. [4]), which are based on concep-
tual information rather than solely on source code.

Annotations and Ontologies can in principle support
interoperability of base code and adaptations. In practice
the developer of both parts need to make sure that their
implementations are suitable to work together. For the col-
lection of distributed content alone this might work, but
when the option of typed content or different content na-
tures come into play, the restrictions can not be expressed
in simple annotations and therefore not checked statically.

Introspection and Reflection provide in principle un-
limited adaptation options at runtime. E. g. h-maps as avail-
able in the PalCom architecture (cf. [12]) reflect the com-
plete structure of a service-oriented system even within the
components. Reflective extension exist for languages like
Java which originally only provide introspection (cf. [13]).
We assume that complete reflection is not needed, but only
certain parts of programs will be inspected or even altered
at runtime in order to adjust adaptations to work with
them. On the other hand for that parts of the code that are
needed to fine-tune the adaptation semantic information on
the business level is necessary. Hence reflection alone does
not suffice.

Summarizing we propose to combine different aspects of
all these approaches to tackle the requirements we elicitated
in section 2.3 as we earlier suggested in [8].

5. OUTLOOK
In our approach structural metadata is mapped to an in-

terface and an aspect in order to expose adaptation points
as services. We are optimistic to automate this step by gen-
erating the according code from the structure specification.
Thus the development effort would be reduced significantly.

We work on support for service retrieval and composition
to partly automate finding and configuring adaptations (cf.
step (g) in section 3.3). A basic retrieval model thereof is
described in [6].

We are currently investigating a dynamic variant of us-
ing structural metadata. The basic idea involves a dynamic
structure repository that provides reflection on the code as
specified by the structures. Compared to other reflective
approaches (e. g. [12]) this would lead to a quantitatively
limited but qualitatively enhanced reflection. I. e. more in-
formation about but only a part of the code. Seemingly,
metadata can be annotated easier (cf. step (d) in section
3.3) in some cases and we hope for a simpler way to imple-
ment the adaptive glue code.

We want to enhance structure schemata by actually using
a given ontology defining terms like "document" or "title"
would be of great use. We see two possible benefits: (1) this
could lead to a semi-automatic detection of possible adapta-
tions and (2) the potential of adaptivity could be exploited
better, e. g. a document title could have more weight for
indexing than the body.

Finally, we did not analyze yet how our approach could
be used when a dynamically typed language like Smalltalk
or Lisp is used. A detailed comparison to other approaches
like mixin layers or ContextL as described in [3] and [2]
respectively would be of great interest.

6. SUMMARY
In this paper we present a novel approach for developing

adaptive service-based software. It employs structural meta-
data annotating selected software elements that can later
be used for adaptivity. These annotations describe certain
parts of the software structure on an ontological level. Based
on the structural metadata, we infer aspects and weave them
statically into the base code to expose adaptation points as
services. At runtime we employ dynamic context-sensitive
aspects to adapt the software appropriate to the current
given user situation. We discuss our approach to some de-
tail with the help of an illustrative example.

7. REFERENCES
[1] AspectJ Compiler. http://eclipse.org/aspectj/.
[2] P. Costanza and R. Hirschfeld. Language Constructs

for Context-oriented Programming - An Overview of
ContextL. Dynamic Languages Symposium, 2005.

[3] P. Costanza, R. Hirschfeld, and W. D. Meuter.
Efficient Layer Activation for Switching
Context-dependent Behavior. In Joint Modular
Languages Conference 2006 (JMLC2006). Springer
LNCS, Oxford, England, 2006.

[4] A. Kellens, K. Mens, J. Brichau, and K. Gybels.
Managing the Evolution of Aspect-Oriented Software
with Model-based Pointcuts. In D. Thomas, editor,
Proceedings of the 20th European Conference on
Object-Oriented Programming (ECOOP), pages
501–525. Springer, LNCS 4067, 2006.

[5] G. Kniesel and T. Rho. A Definition, Overview and
Taxonomy of Generic Aspect Languages. L’Objet, to
appear, 2006.

[6] J. Kuck and M. Gnasa. Context-Sensitive Service
Discovery meets Information Retrieval. In Proceedings
of the Fifth IEEE International Conference on
Pervasive Computing and Communications (PerCom),
2007.

[7] H. Mügge, T. Rho, D. Speicher, P. Bihler, and A. B.
Cremers. Programming for Context-based
Adaptability — Lessons learned about OOP, SOA,
and AOP. SAKS Workshop in conjunction with
GI/ITG-Tagung Kommunikation in verteilten
Systemen, March 2007.

[8] H. Mügge, T. Rho, M. Winandy, M. Won, A. B.
Cremers, P. Costanza, and R. Englert. Towards
context-sensitive intelligence. In R. Morrison and
F. Oquendo, editors, Proceedings of European
Workshop on Software Architecture. Spinger LNCS
3527, 2005.

[9] OSGi Alliance. OSGi Service Platform Service
Compendium - Release 4, August 2005.

[10] T. Rho and G. Kniesel. Uniform Genericity for Aspect
Languages, Technical Report IAI-TR-2004-4,
Computer Science Department III, University of
Bonn. In Uniform Genericity for Aspect Languages,
Technical Report IAI-TR-2004-4, Computer Science
Department III, University of Bonn. Dec 2004.

[11] T. Rho, M. Schmatz, and A. B. Cremers. Towards
context-sensitive service aspects, workshop on object
technology for ambient intelligence and pervasive
computing, in conjunction with 20th european
conference on object oriented programming (ecoop
06), july 3-7, nantes, france, July 2006.

[12] U. P. Schultz, E. Corry, and K. V. Lund. Virtual
Machines for Ambient Computing: A Palpable
Computing Perspective. In Workshop on Object
Technology for Ambient Intelligence at ECOOP, 2005.

[13] É. Tanter, N. Bouraqadi, and J. Noyé. Reflex –
Towards an open reflective extension of Java. In
A. Yonezawa and S. Matsuoka, editors, Proc. of Third
International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns (Reflection
2001), pages 25–43. Springer, LNCS 2192, 2001.

