Applying Context-Awareness to Service-Oriented Architecture

Florian Kronenberg

Bonn-Aachen International Center for Information Technology RWTH Aachen

Context-Aware and Ambient Applications, 2007

Outline

- 2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
- 3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

Context-Aware Applications.

- Mobile Devices
 - · Good computing power, memory, networking
 - User experience limited by interaction with small displays and keyboards
- Context-Awareness
 - Minimizes amount of interaction user ↔ device
 - Enables provision of situation-dependent services
 - \Rightarrow augmented reality

Context-Aware Applications.

- Mobile Devices
 - · Good computing power, memory, networking
 - User experience limited by interaction with small displays and keyboards
- Context-Awareness
 - Minimizes amount of interaction user \leftrightarrow device
 - Enables provision of situation-dependent services
 - ⇒ augmented reality

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● のへの

Service-Oriented Architecture

- Recent paradigm in Software Engineering
- Services
 - Loosely coupled
 - Distributed
 - Fulfill specific functionality according to a service contract
 - Functionality implemented and deployed once only
- Create applications by composing services
- Typical roles
 - Client
 - Service repository
 - Service provider

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三日 のへの

Service-Oriented Architecture

- Recent paradigm in Software Engineering
- Services
 - Loosely coupled
 - Distributed
 - Fulfill specific functionality according to a service contract
 - Functionality implemented and deployed once only
- Create applications by composing services
- Typical roles
 - Client
 - Service repository
 - Service provider

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Service-Oriented Architecture

- Recent paradigm in Software Engineering
- Services
 - Loosely coupled
 - Distributed
 - Fulfill specific functionality according to a service contract
 - Functionality implemented and deployed once only
- Create applications by composing services
- Typical roles
 - Client
 - Service repository
 - Service provider

▲□ → ▲ 三 → ▲ 三 → ▲ □ → ● ● ●

Service-Oriented Architecture

Figure: Roles and interactions in an SOA

ヘロト ヘ回ト ヘヨト ヘヨト

Context-Awareness and Service-Oriented Architecture

Mutual influences between context-awareness and service-oriented architecture

- Context-aware applications
 - Context-aware middleware solutions based on SOA paradigm
 - Use composition to integrate partial contexts
- SOA
 - Context-aware service discovery
 - Context-aware service usage

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Context-Awareness and Service-Oriented Architecture

- Mutual influences between context-awareness and service-oriented architecture
- Context-aware applications
 - Context-aware middleware solutions based on SOA paradigm
 - Use composition to integrate partial contexts

SOA

- Context-aware service discovery
- Context-aware service usage

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Context-Awareness and Service-Oriented Architecture

- Mutual influences between context-awareness and service-oriented architecture
- Context-aware applications
 - Context-aware middleware solutions based on SOA paradigm
 - Use composition to integrate partial contexts
- SOA
 - Context-aware service discovery
 - Context-aware service usage

<□> < => < => < => < =| = <0 < 0

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Outline

Motivation

- 2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
- 3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

General Concepts of Context Management

- Context is managed at different levels of abstraction
- Contextual information
 - Single scalar value, e.g. temperature
 - Vector, e.g. location (latitude, longitude)
 - Abstract situation, e.g. waiting for the bus, lunch break, in a meeting
- Processed by different components/layers according to level of abstraction
- Muliplicity higher layer to lower layer: 1 *

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

A Proposed Layered Reference Architecture

Figure: A proposed layered reference architecture for context management systems

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Outline

Motivation

- 2 Context Management
 - A Proposed Layered Reference Architecture

Sensing

- Context Data Representation in the Context Repository
- Context Querying and Reasoning
- Context Provider (Aggregation and Delivery)
- 3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

- Sensor hardware provides raw data
- Data tuples represent the state of an observed entity
- Typical examples
 - Temperature
 - Location
 - Movement
 - Proximity of other entities
- Sensing layer
 - Abstracts from underlying hardware
 - Translates between physical and virtual domain

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Outline

Motivation

- 2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
- 3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

< 🗇 🕨

Context repository

- Stores lower-lever contextual information acquired by sensors
- Data structures according to a formal context-model
- Goal: semantic model that machines can reason about

Reterence Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Context Models

- Key-value
- Markup-based (hierarchical)
- Logic-based
- Ontology-based

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

- In Philosophy: The study of being or existence
- Concepts
- Attributes
- Interrelationships

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

OWL - The Web Ontology Language

- Part of the Semantic Web activity
- Semantic content to be interpreted by machines
- Core elements:
 - Classes
 - Properties
 - Instances
- Identified uniquely by URIs
- Relationships between classes in terms of Boolean operators
- Properties define valid domain, range and cardinality

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

・ロト (周) (E) (E) (E) (E)

OWL – Example

Listing 1: An excerpt of an OWL-descriped food ontology [1]

```
<owl:Class rdf:ID="PotableLiquid">
    <rdfs:subClassOf rdf:resource="#ConsumableThing" />
    <owl:disjointWith rdf:resource="#EdibleThing" />
</owl:Class>
```

```
<owl:Class rdf:ID="Juice">
  <rdfs:subClassOf rdf:resource="#PotableLiquid" />
  <rdfs:subClassOf>
   <owl:Restriction>
        <owl:onProperty rdf:resource="#madeFromFruit" />
        <owl:minCardinality
        rdf:datatype="&xsd;nonNegativeInteger">l</owl:minCardinality
        </owl:Restriction>
        </owl:Class>
```

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

CoOL – ASC model

- Context Ontology-Language [3] defined on top of OWL
- Based on formal context model: ASC
 - Entity
 - Aspect
 - Context Information
 - Scale

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Outline

Motivation

- 2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
- 3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Context Querying and Reasoning

- Querying
 - For the state of another entity (or self)
 - For entities whose contexts satisfy certain criteria
- Reasoning
 - Inferring high-level contextual information from low-level information in repository
 - Existing reasoning engines can be used on ontology-based models
 - Ontologies, repository state, set of rules
- Query languages depend on context data representation

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Outline

Motivation

- 2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
- 3 Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

Reference Architecture Sensing Context Repository Context Querying and Reasoning Context Provider (Aggregation and Delivery)

Context Provider (Aggregation and Delivery)

- Provides contextual information to external client
- Interaction modes
 - Poll (query)
 - Notify (filter)
 - Transparent (trigger)
- Facade that hides intrinsic details of context management
- Potentially composite structure

SOCAM CSDS

Outline

Motivation

- 2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
- Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

SOCAM CSDS

Service-Oriented Context-Aware Middleware

- Introduced by Gu, Pung and Zhang [4]
- Concepts from reference architecture realized as independent services
- Open architecture
- Context provider services
- Context interpreter services
 - Context knowledge-base
 - Context reasoner
 - Uses OWL as representation
 - Generalized context ontology and domain-specific ontologies
 - Notify or trigger actions on clients upon satisfaction of FOL statement
- Service location services
 - OWL-like query language

SOCAM CSDS

SOCAM Service-Oriented Context-Aware Middleware

Figure: Overview of the SOCAM architecture [4]

★ Ξ → ★ Ξ →

Florian Kronenberg Applying Context-Awareness to SOA

SOCAM CSDS

Outline

Motivation

- 2 Context Management
 - A Proposed Layered Reference Architecture
 - Sensing
 - Context Data Representation in the Context Repository
 - Context Querying and Reasoning
 - Context Provider (Aggregation and Delivery)
- Selected Systems Applying Context-Awareness and Service-Oriented Architecture
 - Service-Oriented Context-Aware Middleware (SOCAM)
 - Context-Sensitive Service Discovery System (CSDS)

SOCAM CSDS

CSDS Context-Sensitive Service Discovery System

- Introduced by Kuck et al. [5, 6]
- Formalized service-discovery model
- Uses concepts from information retrieval
 - Term-based context model
 - Query matched against a collection of services
 - Relevance of service according to ranking function
- User context matched against service context
- Static service context derived from WSDL
- Dynamic context derived from user feedback

SOCAM CSDS

CSDS Context-Sensitive Service Discovery System

Figure: Context of a mobile user [5]

SOCAM CSDS

CSDS Context-Sensitive Service Discovery System

Figure: An example service context model [5]

Florian Kronenberg Applying Context-Awareness to SOA

- Context-Awareness and SOA can mutually take advantage of each other.
- Service-Oriented Architectures help building powerful distributed Context-Management Systems.
- Ontology-based context models help inferring higher-level understanding of situation.

For Further Reading I

W3C:

Food ontology.

Web resource Available online at

http://www.w3.org/TR/owl-guide/food.rdf; visited on May 24th 2007.

Strang, T., Linnhoff-Popien, C.:

A context modeling survey.

In: Workshop on Advanced Context Modelling, Reasoning and Management as part of UbiComp 2004 - The Sixth International Conference on Ubiquitous Computing, Nottingham, England (September 2004)

For Further Reading II

- Strang, T., Linnhoff-Popien, C., Frank, K.:
 - CoOL: A Context Ontology Language to enable Contextual Interoperability.

In Stefani, J.B., Dameure, I., Hagimont, D., eds.: LNCS 2893: Proceedings of 4th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems (DAIS2003). Volume 2893 of Lecture Notes in Computer Science (LNCS)., Paris/France, Springer Verlag (November 2003) 236–247

For Further Reading III

Gu, T., Pung, H.K., Zhang, D.Q.:

A service-oriented middleware for building context-aware services.

J. Netw. Comput. Appl. 28(1) (2005) 1-18

Kuck, J., Reichartz, F.:

A collaborative and feature-based approach to context-sensitive service discovery.

In: 16th International World Wide Web Conference, Workshop on Emerging Applications for Wireless and Mobile Access (MobEA V), Banff, Alberta, Canada (May 2007)

For Further Reading IV

Kuck, J., Gnasa, M.:

Context-sensitive service discovery meets information retrieval.

In: Pervasive Computing and Communications Workshops, 2007. PerCom Workshops '07. Fifth Annual IEEE International Conference on, White Plains, NY, USA (March 2007)

For Further Reading V

Kuck, J., Reichartz, F.:

A collaborative and feature-based approach to context-sensitive service discovery.

In: 16th International World Wide Web Conference, Workshop on Emerging Applications for Wireless and Mobile Access (MobEA V), Banff, Alberta, Canada (May 2007)

