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Abstract. Mobile devices used today have limited capabilities of gath-
ering information about the situation in which they are used – the context
– collecting data by sensors built into the devices. The currently pop-
ular service-oriented architecture paradigm composes applications from
distributed services which provide a specific function through a platform-
independent interface. In this paper, we describe possible relationships
between context-aware applications and service-oriented architectures.
The paper takes a close look on architectures of middleware that pro-
vide context management capabilities to service-oriented environments.
We further propose a layered reference architecture following common-
alities between the systems we inspected. We describe several systems
as examples for applications benefiting from context-awareness, such as
context-sensitive service discovery.

1 Introduction

Today mobile computing devices are used by an increasing number of world-
wide users. These devices are already part of the daily life of their carriers.
Contrary to the limitations of their predecessors, many current mobile devices
have decent computing power, a great amount of expansible memory and pro-
vide networking capabilities on local and global scales. In these environments it
is possible to execute powerful mobile applications. Still limited, however, is the
user interface of these devices. Mobile devices are restricted in size and therefore
display and input parts cannot provide a user experience that is comparable to
the user experience in desktop computers. The amount of necessary interaction
with mobile applications can in some situations be reduced by exploiting contex-
tual information about users and devices. Sensor hardware that can be used for
gathering contextual information is highly available and increasingly present in
mobile standard devices. The low-level sensing data, such as physical location or
temperature, can be used in order to infer higher-level contextual information,
such as a situation (e.g. “taking a sunbath at the beach”). The user experience
in mobile applications that depend on contextual information can be greatly en-
hanced by automatically providing contextual information derived from sensor
data to these applications.

Service-oriented architecture (SOA) is a recent computing paradigm where
specialized tasks are carried out by loosely-coupled, distributed software com-



ponents which are accessible through platform-independent protocols and inter-
faces. Services can be invoked by or composed to various applications. The main
goal of such an architecture is that services provide functions – the industry
mostly considers them business processes – which need to be implemented and
deployed only once in order to be used by several applications.

Both concepts, context-aware computing and the service-oriented architec-
ture paradigm, can mutually take advantage of each other. Context-aware sys-
tems need a context management component in order to abstract from raw sensor
data and deliver higher-level contextual information to other functional parts of
the system. Mobile devices which carry sensors are usually limited to detecting
only a certain part of the overall system context. The service-oriented paradigm
helps in building middleware solutions which make certain pieces of contextual
information available to components to which they are relevant, regardless of
the physical distribution of the sensors from where this information originates.
Access to contextual information on different levels of abstraction can be pub-
lished as a service and these services can be composed to deliver higher-level
contextual information – again to be published as services. On the other hand,
service-oriented architectures can be enhanced by context-awareness. Some au-
thors report benefits from using context information in order to improve the
quality of search results in service discovery. Others propose that the service be-
havior itself could change depending on contextual information. These services
can provide capabilities that adapt themselves to the specific contexts of the
service clients and service providers.

This paper inspects systems which unite context-awareness and service-orientation.
All of these systems provide some type of context-management, which we will
inspect in more detail. Some of them use context-management in order to build
context-aware middleware solutions to be used within service-oriented architec-
tures. We present another important example on how contextual information can
be used within service-oriented architectures: context-aware service discovery.

The systems we discuss in detail are a selection from scientific literature.
They were chosen according to their affinity to the service-oriented paradigm
and their general relevance as indicated by the number of other publications
containing references to them. Selected systems providing context-management
in a service-oriented architecture are:

– ContextToolkit [31,32]
– Reconfigurable Context-Sensitive Middleware (RCSM) [31,32]
– Context-Aware Middleware for Ubiquitous Computing Systems (CAMUS)

[2,3,4,5,33]
– Context Ontology Language (CoOL) [2,3,4,5,33]
– Service-Oriented Context-Aware Middleware (SOCAM) [35,36]

Our selection of systems concerning context-aware service discovery is:

– Untitled context-aware service discovery system by Doulkeridis et al. [18]
– Context-Sensitive Service Discovery System (CSDS) [19,20]



The rest of the paper is organized as follows: Section 2 introduces some general
concepts of context management and defines a layered reference architecture
for context management applying these concepts. In section 3 we describe lan-
guages and standards that have proven useful in context-aware service-oriented
architectures according to the systems we inspected. In the following section we
summarize the internal architecture of the context-management systems we in-
spected as their role in the overall architecture in which they were proposed. We
also inspect implementations of an important application of context-awareness
in service-oriented architectures, context-aware service discovery. The last sec-
tion defines evaluation criteria and evaluates the inspected systems according to
the criteria.

2 General Concepts of Context Management

Context-aware systems manage context on different levels of abstraction [1].
Contextual information can be represented by a single scalar value (such as
“room temperature is 25 degrees centigrade”) which represents the raw output of
a sensor. Contextual information can also be a higher-level semantic description
of a situation (such as “waiting for the bus”). Sophisticated context management
systems are able to deal with both types of context information, combining and
transforming the former to the latter. Context information that is delivered to the
system by sensing units has to be processed and transformed from raw sensor
signal data to representations of the context that are structured according to
a certain context model. These representations allow other components of the
context-aware systems to access the context on different levels of abstraction
through unified access points.

In this section we introduce concepts that are common to systems that pro-
vide context management. Based on the context-management systems we in-
spected and the commonalities we found between them we propose a layered
reference architecture (see fig. 1). Each of the concepts is assigned to a layer
according to the level of abstraction of the contextual information provided,
starting with sensing at the bottom layer and ranging up to high-level context
provision to collaborating systems. Access to the context data representations of
each layer is granted through well-defined interfaces hiding the intrinsic details
of the lower layers. Each higher layer optionally combines information gathered
from multiple distributed instances of the next lower layer. The distributed in-
stances provide different but not necessarily disjoint portions of the contextual
information which forms the overall system’s context.

Sensing deals with the processing and transformation of raw sensor data. The
context data repository stores the system’s context-related state in appropriate
data structures. Context reasoning allows the semantic extraction of higher-level
context information from lower-level context information while querying refers
to methods used in order to access selected contextual information from higher
layers. A context provider is the top layer that publishes contextual information
as a service in a service-oriented architecture. Most of these concepts are present



in a majority of the systems that we inspected. We chose concepts that allow
a complete model of context management from sensing to high-level context
provision. Some of the systems, however, do not focus on a complete representa-
tion and did therefore not include all of the concepts. Others include all of the
concepts but do not prescribe a layered architecture.

Fig. 1. A proposed layered reference architecture for context-management.
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2.1 Sensing

Contextual facts can be discovered by interpreting data that is collected by
sensors. Sensing units produce data tuples that represent the state of an observed
entity according to certain scales. Typical examples for context information that
can be observed by sensors are location (eg. via GPS), movement, temperature,
time and proximity of other entities (by RFID, bluetooth, etc.).

Access to and representation of sensor data is likely to be heterogeneous in
most systems. Sensing units can be connected to the system via a variety of
hardware and software interfaces and the native access to these units can be tied
to different layers of abstractions within the systems. The manufacturers of some
sensing units, for example, can provide a high-level SDK in order to access the
units while others might require developers to parse a bit stream from the serial
port. This leads to increasing complexity in the design and implementation of



context-aware system. A layer of abstraction, which allows the sensor data to
be accessed by higher layers in a standardized and unified manner, should be
provided in order to prevent strong dependencies of a context-aware system on
specific sensor hardware. Such a layer would transform the data from sensor
domain to context domain, providing a mapping between the sensor representa-
tions of observed entities and their states and a representation that is meaningful
in context-management.

This concept layer is described in detail for Context Aware Middleware for
Ubiquitous Computing (CAMUS), which introduces the concept of Feature Ex-
traction Agents (FXA) in order to implement a Unified Access Pattern [2,3,4,5].
FXA denote software components that extract the most descriptive features from
the sensors that are needed for deducing high-level context information in the
upper layers. Hence, the heterogeneity of the sensor data representation becomes
transparent to the upper layers.

2.2 Context Data Representation in the Context Repository

A context repository stores the context data that is acquired by the sensing
layer and provides access to it to higher layers. In order to define data structures
for context data that can be processed by machines we need a formal model to
represent the context. Strang et al. summarize and evaluate common modeling
approaches in a 2004 survey [6]. We supplement the modeling approaches by
Strang with some more recent examples and one additional approach, term based
models. The approaches are classified by the characteristics of the data structures
that are used to exchange contextual information throughout the system:

Key-Value Models. These are the most simple data structures modeling contex-
tual information. Each type of context information is represented as a key that
is mapped to the current state of the context information. This class of models is
used for service discovery in several distributed service frameworks. The service
discovery procedure of these frameworks applies a matching algorithm to the re-
spective key-value pairs of contextual information within the service description
and the contextual information within a service discovery request. An example
using key-value based context attributes for service discovery can be found in
[7].

Markup-Scheme-Models. Markup based models use a hierarchical data structure
consisting of markup tags with attributes and content. A typical example for
these models are profiles such as the Composite Capabilities / Preference Profile
(CC/PP) [8] and the User Agent Profile (UAProf) [9], which are serializable in
XML and accessible by RDF/S [10]. More examples for markup based context
models can be found in [6].

Graphical Models. The UML is a general-purpose graphical modeling instrument
that can be extended to model context. A UML profile for Model-Driven Devel-
opment (MDD) that allows developers to graphically specify the contexts that



impact an application is proposed by Ayed et al. in [11]. An extension to ORM
[12] that allows ORM fact types to be categorized as static or dynamic, context-
dependent, is described by Hendricksen et al. in [13]. These modelling approaches
are meant rather to bring context-awareness to the software engineering process
than serving as a runtime representation of context.

Object Oriented Models. The main benefits of object oriented approaches are
encapsulation and reusability. The details of context processing are available
to the objects representing a certain context information only and therefore
hidden from other components in the system. Access to the context information
of an object is provided by well-defined public interfaces. In section 4 we give
a summary of the Context Toolkit where context is represented in an object-
oriented fashion.

Logic Based Models These models define context in terms of facts, expressions
and rules. Context information can be either represented as a fact, in case of
lower-level context information, or inferred applying the defined rules of a sys-
tem to these facts, in case of higher-level context information. Therefore, these
models require a high degree of formality. In addition to modeling context in
data structures logic based models inherently emphasize on context reasoning,
which is not necessarily part of the context repository from an architectural point
of view but usually provided by a separate subsystem in the same or even on a
higher layer.

Ontology Based Models These models represent context based on ontologies [14].
Ontologies are a concept borrowed from philosophy. In computer science they
are used to express knowledge about concepts (or classes), their attributes and
interrelationships. Ontologies may be stored and maintained by different authors
in different locations which makes them suitable for distributed computing. A
widely adopted standard notation for defining ontologies is the Web Ontology
Language (OWL)[15]. They are also an important concept of the Semantic Web
[16].

In their evaluation of different context modeling approaches Strang et al. [6]
arrive at the conclusion that the ontology based models are the most promising
due to their high and formal expressiveness.

Strang et al. propose a context model based on ontologies known as the
Aspect-Scale-ContextInformation (ASC) model [17]. The core concepts of this
model are:

Context Information Any information characterizing the state of an entity
w.r.t. a specific aspect.

Entity An object, such as a person, place or a device.
Aspect Classification, symbol or value range of all reachable states in one or

several dimensions called scales.
Scale An unordered set of objects defining the range of valid context informa-

tion.



An aspect in this model could be temperature or geographical location, for ex-
ample. In the case of temperature this aspect could be measured in scales such as
degrees Celsius or degrees Fahrenheit. Possible would also be to have a rougher
scale {chilly, cold, mild, warm, hot}. The quality of a context information, such
as “30 degrees Celsius” or “hot”, can be further characterized by meta informa-
tion, which is a context information itself, measured in a scale of a higher-order
aspect, such as quality.

The scales in an aspect are further constraint in a way that there must exist
a mapping function from one scale to at least one other scale of the same aspect.
This function type is called IntraOperation. The other two function types in
this model are InterOperations, which produce context information depending
on scales of one or more other aspects, and MetricOperations, which compare
context information instances of the same scale to each other, establishing a
natural ordering of these instances.

Term-Based Models In addition to the models that were included in the 2004
survey by Strang et al. term-based models are found in more recent context-
aware systems. Term-based context models are used in systems where context is
needed in order to enhance the quality of the results of service discovery. Mobile
applications have particular needs regarding the relevance of the top K results
since their display and user input capabilities are usually not appropriate for
browsing long lists of results.

Doulkeridis et al. present a basic approach for service discovery by matching
a user context and a service context, both represented by terms [18].

The context-sensitive service discovery system (CSDS) as proposed by Kuck
et al. [19,20] distinguishes between the set of the user’s service needs and the set
of semantic service descriptions. Due to the limitations in computational power of
mobile devices the user context is represented in a simple data representation on
the client (e.g. key-value). The context information in this model is categorized
into static – mostly constant over time – and dynamic – changing over time –
attributes. Personal information such as gender and date of birth are regarded as
static attributes. Dynamic attributes can be related to the real-world situation
as, for example, time and location or virtual (information) world situation as
the user’s documents and emails. When a service discovery request takes place
the user context is passed to the discovery provider along with the query terms
specified by the user.

The service context consists of so-called features that again fall into the cate-
gories static and dynamic features. The static features contain information such
as purpose, provider and language that are derived from the web service de-
scription by semantic analysis of WSDL (cf. 3.4) documents which are originally
meant to describe the syntactically correct usage of the Web Service’s methods.
The dynamic features contain relevance feedback collected from users. They in-
clude user contexts of users to whom the service was relevant, queries issued by
users before invoking the service and other information that can be submitted
by or extracted from the behavior of users.



Natural-language terms that are used as the instances of some of these fea-
tures are limited in that their semantic relationships are usually not established
in computer systems. In order to enhance the quality of the service discovery pro-
cess the service context as implemented on a server can be represented by more
sophisticated semantic models. Kuck et al. propose the use of OWL ontologies
in a formal model specified in RDF.

Although the internal representation of user and service contexts is very sim-
ilar to already established models (key-value and ontologies) term-based models
are considered a separate context modeling approach since the matching of the
two contexts is done on term level using matching algorithms that are common
in information retrieval.

2.3 Context Querying and Reasoning

Querying context-information serves different purposes. The application can be
either querying for its own context or the context of another well-known entity
(as in CAMUS) or it can query in order to discover entities that are relevant to
them because their contexts satisfy certain filter and matchmaking conditions
(as in the CoOL system architecture [17] or CSDS).

In order to respond to context queries that specify higher-level contexts a rea-
soning or inference engine is needed. This engine should be capable of inferring
higher-level contextual information by combining lower-level contextual infor-
mation stored in the context repository. Logic and ontology-based data repre-
sentations are preferable where context reasoning is desirable in order to process
a query. In case of an ontology-based data representation the reasoning engine
operates on the ontology, the context data linked to instances in the ontology
and a defined set of rules. Several authors [17,3] propose the use of existing
reasoning engines within the query and reasoning layer of their system architec-
ture. Depending on the reasoning engine and the context model that backs the
context-aware system a query language is needed in order to formulate queries.

Systems that rely on a term-based context model do not necessarily depend
on semantic inference. The matching of context-enhanced service requests and
service descriptions corresponds to matching the terms by which they are de-
scribed. The results of this matching are ranked according to a ranking function
that operates on a certain information retrieval model such as the vector space
model or a probabilistic model. For a thorough discussion of information retrieval
models, see [21]. As suggested by Kuck et al. in [19] , semantic modeling of the
service context could be used in order to expand the service request queries.

2.4 Context Provider (Aggregation and Delivery)

Contextual information can be offered to other applications or other components
within the same application by a context provider. The communication between
the context provider and other parties is potentially bi-directional. Context in-
formation is either delivered upon incoming requests or as notification to listen-
ing parties. The context provider acts as a facade hiding the intrinsic details



of context processing from other system components. Its interface for querying
contextual information as well as the data delivered at notification can thus
be independent from the underlying query language, inference engine and data
representation.

Composition of context provider services or an appropriate context provider
discovery mechanism allow for contextual information to be distributed between
several parties in the service-oriented architecture. Clients of context provider
services have access to a single centralized instance in order to request con-
textual information. In CAMUS this instance (context delivery service) is not
a monolithic context provider service but rather a lookup interface to discover
context providers (context aggregators) to whom it provides registration facilities
[3]. In the CoOL system architecture clients and service providers access a con-
text management access point that is implemented by a potentially distributed
context-management implementation [17].

3 Languages used in Context-aware Service-oriented
architectures

Context-aware system architectures base their collaboration and interoperability
on standardized languages and protocols. This section briefly describes some of
the standards which are used by the systems we inspected. RDF(S) and OWL
are part of the semantic web stack while UDDI and WSDL are used in service
oriented architectures. OWL-S bridges these two worlds by providing an ontology
for describing web services.

3.1 RDF and RDF/S

The Resource Description Framework (RDF) is one of the core elements of the
Semantic Web Stack which was devised by Tim Berners-Lee and is advanced by
the W3C [22]. Designed as a meta-data model, RDF consists of statements made
about resources. These statements, called triples in the RDF terminology, occur
in the form of subject-predicate-object expressions. The subjects and objects iden-
tify concepts and their relationship concerning a certain aspect is established by
the predicate. Thus, conceptually, a set of RDF statements represents a labeled
directed graph.

Unique identification of the elements of RDF is essential in order to share
semantic concepts represented by RDF between agents. Therefore, subjects and
predicates are resources identified by a Uniform Resource Identifier (URI), ob-
jects are described by another resource or a literal.

Today’s standard serialization (notation) is RDF/XML [23] where resources
and statements about these resources are encoded as the nodes of an XML doc-
ument. Two types of nodes are defined in RDF/XML: Resource nodes represent
resources and contain only property nodes, which define a predicate and contain
other resource nodes or literals as objects.



Listing 1.1. An RDF example describing properties of the Wikipedia article on
RDF [24]
<?xml version="1.0" encoding="UTF -8" ?>
<rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:dc="http://purl.org/dc/elements /1.1/">
<rdf:Description

rdf:about="http://en.wikipedia.org/wiki/Resource_Description_Framework">
<dc:title >Resource Description Framework </dc:title >
<dc:publisher >Wikipedia , the free encyclopedia </dc:publisher >

</rdf:Description >
</rdf:RDF >

RDF is complemented by RDF Schema (RDF/S) [10] – a vocabulary for
describing the basic semantics of resources in terms of resource classes and their
valid properties. RDF by itself does not put any restrictions on the relationships
it establishes between resources. The properties to be used in order to describe a
resource are defined using RDF Schema. Classes of resources and generalization-
hierarchies between these classes restrict the type of resources such a property
can be applied to.

The above code example defines a resource http://en.wikipedia.org/wiki/
Resource_Description_Framework that has a property “publisher”. This prop-
erty is defined in the RDF Schema for the Dublin Core Metadata Element
Set available at http://purl.org/dc/elements/1.1/. The definition of such
a property can restrict its applicability to a certain domain, for example a doc-
ument in this case, and range, such as a person or institution. The meaning of
the concepts of domain and range can be demonstrated on statements of the
subject-predicate-object form, where the domain corresponds to the class of the
subject, the property is the predicate and the range corresponds to the class of
the object.

3.2 OWL

Another important part of the Semantic Web activity is the Ontology Web Lan-
guage (OWL) [15], which is built on top of RDF and RDF/S on order to represent
machine-interpretable semantic content. OWL is recommended by the W3C as
a successor to the earlier OIL and DAML+OIL. Its core elements are classes,
their related properties and instances. With respect to RDF/S it adds more vo-
cabulary for the description of classes and properties and their relationships. It
allows, among others, to describe the relationships of classes using Boolean ex-
pressions such as unionOf or complementOf. Restrictions can be placed on the
validity of property values in class definitions. In addition to defining range and
domain of properties OWL introduces the notion of cardinality of properties.

The source example in listing 1.2 is taken from W3C’s sample food ontol-
ogy. It demonstrates how relationships between classes are established using
generalization and Boolean set operators and how restrictions can be placed to
properties of these classes. According to this ontology, potable liquids are a sub-

http://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/Resource_Description_Framework
http://purl.org/dc/elements/1.1/


Listing 1.2. An excerpt of an OWL-descriped food ontology [25]
<owl:Class rdf:ID="PotableLiquid">

<rdfs:subClassOf rdf:resource="#ConsumableThing" /
<owl:disjointWith rdf:resource="#EdibleThing" />

</owl:Class >

<owl:Class rdf:ID="Juice">
<rdfs:subClassOf rdf:resource="#PotableLiquid" />
<rdfs:subClassOf >

<owl:Restriction >
<owl:onProperty rdf:resource="#madeFromFruit" />
<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality >
</owl:Restriction >

</rdfs:subClassOf >
</owl:Class >

class of consumable things and disjoint from edible things. Juices are a potable
liquid with the additional restriction to be made from at least one fruit.

According to the W3C OWL is designed explicitly for generic tool support.
These tools foster reasoning about any OWL-defined ontology regardless of its
subject domain. A reasoning tool is capable of inferring properties that are not
directly assigned to resources in a given ontology by applying logical deductions
to the classes, properties and their relationships that are defined in that ontology.
Context-aware systems that are based on ontologies can use the capabilities
of reasoners in order to infer higher-level context information from lower-level
context information stored in a context repository. A list of available OWL tools
is available at [26].

3.3 UDDI

Universal Description, Discovery and Integration (UDDI) [27] is a standard for
publishing and discovering the services of a service-oriented architecture. UDDI
defines XML-based registries either for use on public networks or within a com-
pany’s internal service infrastructure. The standard specifies protocols for ac-
cessing the registry along with methods for controlling the access to the registry
and a mechanism for distributing records to other registries.

The UDDI data model knows several data types for storing data and meta-
data about services. These are defined in several XML schemas. Among these,
data types for describing the function of a service, information about the orga-
nization that publishes the service, its technical details including its API and
various other metadata – called the tModel – are included. UDDI does, how-
ever, by itself not allow any means of semantic matchmaking between a service
description and a client’s service needs and does not manage any contextual
information about services and the clients that use or have used these services.



3.4 WSDL

The Web Service Description Language (WSDL) [28] is an XML-based language
providing elements for describing web services. It is defined by the W3C and is
largely accepted as an industry standard. Clients can inspect WSDL files to find
information about how to communicate with a web service. Web service descrip-
tions are composed from several element types on different levels of abstraction
to allow reuse of these descriptions independent of physical locations and data
formats of the services.

Communication between web service clients and web services is accomplished
usually by exchanging messages in an XML format. WSDL specifies the data
types which constitute these messages, usually in the form of XML schemas.
Operations are defined in terms of input and output messages. In order to deploy
the operations in web services a binding to a specific communication protocol,
usually SOAP [29], is declared. All of the former definitions including the binding
are reusable components since they do not describe any physical communication
endpoints. The actual service element in a WSDL consists of a collection of ports,
physical endpoints mapped to a binding.

3.5 OWL-S

To overcome the lack of semantic description capabilities in UDDI and SOAP,
OWL-S [30] was created as an OWL ontology for describing semantic web ser-
vices. Its main target is to enable applications to automatically discover and
invoke web services. In contrast to UDDI registries which were targeted at hu-
man service selectors, OWL-S descriptions are meant for application clients. An
OWL-S ontology consists of three main parts: the service profile which describes
the purpose or business function of the service, the service model which describes
how clients can interact with the service by detailing the semantic inputs and
outputs of the service and a service grounding containing more technical details
on how to access a service using communication protocols.

Strang et al. consider the use of OWL-S in context-aware service oriented ar-
chitectures in [17]. The authors propose the extension of its predecessor DAML-S
by a service context containing a formal description of a service’s contextual in-
teroperability.

4 Context-awareness in Service-oriented Architectures

In this section we discuss context-aware components that have been proposed to
be deployed within a service-oriented architecture. The internal architecture of
proposed implementations of context-managing and -providing components in
context-sensitive middleware and service-oriented architectures is presented in
Sec. 4.1. Sec. 4.2 describes how these components interact with other components
in a superordinate distributed or service-oriented architecture. Context-sensitive
service discovery will be explored in 4.3. Its focus lies on system architectures
were context is primarily used in order to improve the relevance of the results of
service-discovery requests based contextual information.



4.1 Internal architecture of Context-management implementations

Context Toolkit An early approach towards facilitating the context-awareness
of applications is the Context Toolkit published by Salber et al. [31,32]. It was
motivated by the fact that sensing hardware was highly available at the time
but building context-aware systems was hindered by the lack of abstraction from
this hardware. The authors considered the flow of contextual data in a system
as comparable to user input and hence designed their system in analogy to
user interface toolkits. The basic elements in this architecture are widgets that
encapsulate information about a single piece of context.

Although the Context Toolkit’s architecture is rather a componentry than a
layered architecture, it contains matches to most concepts introduced in section
2. Components that abstract from specific sensing hardware and acquire raw
data from a single sensor or a set of closely related sensors are called generators.

Context information acquired by the generators is then stored in the at-
tributes of a widget. This kind of context data representation corresponds to
an object-oriented context data model. Widget classes encapsulate the state of
a certain aspect of the system’s context and define suitable operations on that
state.

The Context Toolkit lacks a dedicated context provider layer. Instead, con-
text is provided to applications or other system components by the widgets
themselves, either through their programming interface or by registering call-
backs. Notifying collaborators about context changes using callbacks corresponds
to the communication style used in UI widgets, where the state of a widget is
usually most relevant to the application when it changes. Higher-level context in-
formation that requires information from several widgets is delivered by a special
type of widget called aggregator.

Basic context reasoning capabilities are provided to widgets and components
that use widgets by interpreters. Since interpreters are not based on a generic
semantic representation of context, implementations depend on specific widgets
and the context information they provide. Dedicated querying facilities are not
defined for the context toolkit. Widgets and aggregators have to be known by
collaborators in order to extract their contextual information and cannot be
acquired through a registry.

CAMUS A Context-Aware Middleware for Ubiquitous Computing Systems (CA-
MUS) has been proposed by a group of researchers from the Kyung Hee Uni-
versity of Korea in several publications [2,3,4,5,33]. The different concepts of
context-management are addressed in a layered architecture encapsulated by a
service that provides context delivery to other components using the middleware.

The CAMUS architecture is roughly divided into three layers: a sensor layer,
a knowledge processing layer and a delivery layer. In the sensor layer raw data is
acquired and processed by software components called feature extraction agents
(FXA) as introduced in 2.1. In order to deploy any type of sensor within this
architecture the developer defines a new FXA providing:



– The native driver in order to communicate with the sensor hardware.
– The algorithm in order to extract the most descriptive features from raw

sensor data. In case of facts that are not directly observable by sensors these
are composed to feature vectors that can be used as input to a pattern-
recognition method.

– The meta-data describing the FXA’s mapping from extracted real-world fea-
tures (such as the identification number of an RFID tag) to virtual context
information (such as the presence of the entity carrying the tag).

Sensor data can be requested using standardized data structures or a feature
markup format. The feature-context mapping in the CAMUS architecture serves
as a bridging component between the sensor layer and the knowledge-processing
layer. It converts the feature tuples that are delivered by the FXAs to context
information that can be managed by a context repository.

Multiple distributed domain-specific context repositories representing differ-
ent domains such as home, office or university. A domain ontology is stored
in such a context repository along with the current and historical state of the
instances of the domain ontology. CAMUS uses OWL to define and store its con-
text ontologies. Domain ontologies are organized in hierarchical structures which
allow a single ontology graph from a single context repository to be integrated
in a large meta-graph combining all context ontologies.

Reasoning is handled by two different types of reasoning modules. High-level
context information that can be inferred from low-level context information by
logical deductions using ontologies is provided by an ontology reasoning mod-
ule. A machine learning module infers high-level context from vague or incom-
plete sensing data by applying machine learning techniques such as fuzzy logic,
Bayesian networks or neural networks. Querying is provided by context aggre-
gators which, in the CAMUS architecture, are part of the delivery layer. The
initial implementation of CAMUS uses RDQL to query context data.

Context delivery, which corresponds to the concept of a context provider in
our reference architecture, is divided into two separate layers in the CAMUS
architecture. Context is provided by context aggregators, each of which performs
a specific function such as querying a certain context aspect for a specific entity
and delivering this context information back to an application. Context aggre-
gators are registered through a registration interface to context delivery services.
Applications or collaborating system components can query the context delivery
services in order to obtain references to context aggregators that satisfy their
contextual information needs.

CoOL The Aspect-Scale-Context (ASC) model, which has been described pre-
viously, is the underlying context model for the Context Ontology Language
(CoOL) [17]. This language is proposed as part of the context management im-
plementation of a service-oriented architecture model. The internal architecture
of the context management implementation contains components which cover
the main concepts of context management. The concept of sensing and a layer
of abstraction for sensing are not explicitly mentioned in [17]. It is assumed,



however, that a mechanism that extracts raw data and stores it as context in-
formation is in place.

Three types of data are stored in the context repository: facts, ontologies
and rules. Facts contain the current instance values of the concepts defined by
the ontologies. Strang et al. define the use of roles “to assert inter-ontology
relationships and ’complete’ the ontologies by computing implicit hierarchies
and relationships” [17]. The context ontologies are defined in CoOL, a language
consisting of two ontology languages: OWL and F-Logic [34]. F-Logic combines
knowledge representation and knowledge querying capabilities.

On the querying and reasoning layer OntoBroker [34] , an advanced reasoning
engine for reasoning about ontologies defined in F-Logic is deployed. The context-
provider service, titled context-management access point by the authors of CoOL
is accessed by other components in a service-oriented architecture. Incoming
requests are mapped to F-Logic queries and forwarded to the inference engine.
Components that are interested in notifications about a context changes under
certain conditions can register in the context-management access point. In this
case a relevance condition filter is specified as an F-Logic statement.

SOCAM Another context-management architecture based on an ontology con-
text model is the Service-Oriented Context-Aware Middleware (SOCAM) [35,36].
Rather than a single service façade with an underlying layered architecture SO-
CAM consists of context provider services which deliver context information on
different levels of abstraction using service composition.

Raw data acquired by one or several interrelated sensing devices is encapsu-
lated by context providers. SOCAM’s definition of a context provider does not
fully match the general high-level concept of a context provider but is on the
smallest scale rather comparable to a context widget in the Context Toolkit that
has an interface which is published as a service in a service-oriented middleware.

Higher-level context data is made available by context interpreters which act
as special context provider services towards their clients and are clients them-
selves to context providers which encapsulate lower-level context data. Context
interpreters consist of two layers: a context knowledge-base and a context rea-
soner. The knowledge base corresponds to the concept of a context repository.
Much alike CAMUS the context is represented in terms of different domain-
specific context ontologies which can be combined in a generic ontology. Ontolo-
gies are again defined in OWL which are stored in a database along with their
current instance values. A context interpreter supports multiple logic reasoners
such as OWL reasoners or general rule-based reasoners.

A separate service location service serves as a registry to the context providers
and provides context-aware service discovery to client applications. Context
providers specify the kinds of contexts they provide to the registry and client ap-
plications can formulate queries containing OWL expressions in order to request
a service that is able to satisfy their contextual information needs. Semantic
matching is applied to these OWL expressions and the ontologies advertised by
the different context providers and interpreters registered with the service loca-



tion service. Therefore, the service location service corresponds to the concepts
of service delivery in our reference model but also incorporates the querying
facilitates which are located in a lower layer of the reference model.

4.2 Uses of Context-management within Service-oriented
Architectures

Context Toolkit Widgets are the central components that deliver contextual
information to applications. In order to become aware of a widget’s contextual
state the application can either poll it or register itself on a callback in order to
be notified. To facilitate this kind of interaction within a distributed environment
the Context Toolkit defines an XML-based remoting mechanism over HTTP [32].
The Context Toolkit does, however, not define any means for an application to
discover new widgets in the distributed environment according to its contextual
information needs.

RCSM Reconfigurable Context-Sensitive Middleware (RCSM) [37] for perva-
sive computing provides transparent ad-hoc communication between mobile ap-
plication peers. It was not mentioned in the previous subsection because the
information provided by the authors emphasizes on the middleware characteris-
tics rather than the internal context management. In RCSM a context-sensitive
object request broker (R-ORB) provides communication transparency by per-
forming service discovery whenever a registered object’s context expression be-
comes true. Objects which communicate using the middleware consist of two
parts: a context-sensitive interface description and a context-independent imple-
mentation. The interface description contains the object’s method signatures and
context expressions. The implementation provides the operations to be triggered
upon fulfillment of the context expressions. Interface descriptions and implemen-
tations are matched by deploying both into a so-called adaptive object container
(ADC).

An R-ORB in RCSM is not a typical context provider service. [37] does not
specify the internal representation and processing of the context in terms of the
concepts presented in section 2. Externally its behavior differs from our concept
of a context provider service since the provision of contextual information to
the peers is fully transparent. An R-ORB is not yet another service within a
service-oriented architecture but a central communication gateway to be passed
by every communication between application clients and services.

CAMUS Context aggregators in CAMUS are the services that interact di-
rectly with application clients providing them with a defined subset of the sys-
tem’s overall context. In this sense it is possible to deploy them as typical ser-
vices within a service-oriented architecture. Communication between application
clients and context aggregators can be initiated by either side, in order to poll ag-
gregators for contextual information , or notify application clients about context
changes.



Access to context aggregators is managed by context delivery services. These
services provide a registration interface that context aggregators use in order to
specify the context they provide. Application clients can invoke a context deliv-
ery service’s lookup interface which enables them to discover context aggregators
that provide contextual information according to the client’s information needs.
Additionally, context delivery services provide dynamic access control mecha-
nisms to ensure privacy and overall integrity of the system [38].

CoOL Strang et al. propose CoOL context providers as an extension to the
generic service model introduced by the Munich Network Management (MNM)
team [39]. In this model actors are separated in the customer domain and the
service domain. Elements in this model that are shared between both domains are
related to as the abstract service which can be fulfilled by a middleware. Strang et
al. extend this model with a context provider domain. In this architecture, titled
MNMplusCE by the authors, context providers are not yet another service, since
they are involved as a third party service provider in the interaction between
customer and service domain enabling context-aware services and context-aware
service usage. Customer applications, services and middleware components get
access to the context provider implementation through its context management
access point (CMAP). Similar other architectures presented in this paper, the
CMAP supports being polled for contextual information as well as asynchronous
notification of other components that specify their particular interest using F-
Logic-based condition filter expressions.

SOCAM All components of the SOCAM architecture act as distributed services
communicating over a common communication protocol – Java RMI in the refer-
ence implementation. Context-aware services is the term used for all components
within this architecture which are interested in contextual information. In order
to discover suitable context providers the context-aware services specify their
context needs to the service locating service which in term delivers instances of
potentially composed context providers. Context providers in SOCAM support
again both styles of communication initiation – polling and notifying.

Comparable to RCSM ADCs context-aware services specify actions to be
triggered by a set of rules whenever the current context changes. These rules,
defined as first-order logic expressions, are loaded into the context reasoner of
an interpreter, which will execute the actions whenever these expressions are
satisfied after a change.

4.3 Context-Sensitive Service Discovery

Further advantages of enabling context-awareness in service-oriented architec-
tures become visible in service discovery. The focus of context-sensitive service
discovery methods lies on improving the effectiveness of the discovery of reg-
ular web services. Although the behavior of these web services might not be



affected by any context their relevance to clients, especially human users, might
be asserted considering contextual information.

In context-sensitive service discovery the relevance of a service according to a
user’s service needs is determined by matching the two types of context: service
context and user context. Doulkeridis et al. [18] build a context-aware service
directory as an extension to standard web service registries such as UDDI. A
query to the service directory consists of two parts. Qusrdescribes a keyword-
based service request containing user-specified search keywords. Qctx formulates
a contextual query containing information about the user’s context. The gen-
eration of Qctx is done using information from two different, regularly updated
repositories: the user profile repository storing user preferences as part of the
overall context and the device profile repository containing information about
the device that is used to access a service. Processing these queries, the service
directory will first find all services which are relevant to the user’s specified query
Qusr in a straightforward service discovery manner. Secondly, Qctx is applied as
a filter to the results induced by Qusr, reducing the result set significantly to
match the user’s specified service needs as well as the user’s context.

The general approach of context-sensitive service discovery matching user and
service contexts is taken further by Kuck et al. [19,20]. Their Context-Sensitive
Service Discovery System (CSDS) defines a formalized service discovery model
and uses state-of-the-art information retrieval techniques for the matching. In
classic information retrieval a query as an expression of of the user’s needs is
matched against a collection of documents and a ranking concerning the rel-
evance of the documents to the user’s information needs as expressed by the
query is produced by a suitable ranking function. Both query and documents
are often composed from language terms. CSDS transfers this model to service
discovery defining a term-based context model. Since the services to be retrieved
in this system are not context-aware themselves their context terms have to be
extracted by the system. Static information about the service can be derived
from the service description usually specified in WSDL documents by semantic
decomposition of the operation and parameter names. Dynamic context infor-
mation is generated from user relevance feedback. Implicit and explicit feedback
from a community of users concerning the relevance of a service to the users’
needs and contextual situation is fed back into the system to enrich the dynamic
service context terms. An in-depth discussion of using implicit user feedback in
order to improve the quality of ranking search results in a web search engine
can be found in [40]. The results of the matching of user and service terms are
ranked by the CSDS according to an adapted Okapi BM25 formula:

w(s, q, u) =
∑

t(q∈PTu)

wt ·
2tf

dl/avdl + tf
· 2qtf

1 + qtf

A detailed discussion of the terms used in this formula is given in [20] and is
beyond the scope of this paper.



5 Evaluation

Several proposed systems that manage context and use contextual information
as an enhancement to service-oriented architectures have been introduced in the
previous sections. In this section we evaluate these systems’ approaches according
to the following evaluation criteria:

– Architectural separation of the concepts presented in section 2 (sco) – We
look at the degree of separation in terms of independent software componens
or layers that implement the different concepts according to the reference
model.

– Abstraction from sensor data (asd) – To what degree the accessible context
representation is abstracted from the raw sensor data.

– Transparency and indirectness (tni) – We evaluate in how far the use of
context providers or even the contextual information itself is transparent to
the components that take advantage of the context-awareness.

– Component interaction style (cis) – Context providers and context-aware
components use different styles of interaction. In the most basic cases the
context-aware components need to poll the context providers for the context
they are interested in. More advanced is the registration of callbacks which
are triggered upon the satisfaction of filter conditions. The most advanced
systems allow developers to specify in a declarative manner which operations
should be invoked on a component when certain contextual conditions arrive.

– Adherence to standards (sta) – To what extent are standards such as the
one discussed in section 3 being followed. This is important for being able
to share contextual data representations between different systems.

– High-level context inference mechanisms (cim) – The quality and flexibility of
the system in the use of inference mechanisms to derive high-level contextual
information.

Table 1. Evaluation results for the inspected systems.

sco asd tni cis sta cim

Toolkit - + - - - -

RCSM - - ++ ++ - -

CAMUS ++ ++ - - + ++

CoOL + ++ - + + +

SOCAM + + + ++ + -/+

Doulkeridis + -

CSDS + +

The systems we inspected had different goals and thus do not put the same
amount of emphasis on fulfilling all criteria and concepts. It is therefore not
possible to argue that a single approach is superior to the others in that it is



more appropriately applying context-awareness to service-oriented architecture.
Toolkit is a simple approach that certainly can be seen as an ancestor of many
later systems since it is often referenced by these. The more advanced systems
in terms of providing context-management to service-oriented architectures are
CAMUS, CoOL and SOCAM. RCSM provides the highest degree of context
transparency but lacks an elaborate model of context management. It is admit-
tedly hard to apply these criteria to the service-discovery systems presented in
this paper. It can be argued though that CSDS is much more promising than
the system presented by Doulkeridis because it has a more elaborate model of
user and service contexts and also because the matching is done using state-of-
the art methods from information retrieval. The middleware-oriented context-
management systems we inspected in sections 4.1 and 4.2 will be evaluated in
more detail in the following sections. Table 1 shows an overview of our evaluation
results.

Context Toolkit as an early approach does not explicitly mention service-
orientation but the way it allows widgets to be used alone and in a composition
and the XML-based remoting capabilities can be regarded as a basic form of
service-orientation already. It does, however, not clearly separate the concepts
of context management since it lacks a standard mechanism for reasoning and
context delivery. It is possible to abstract from sensor data using the separation of
generators and widgets but there is no architectural concept that transforms raw
data into contextual information in a generic way. The degree of transparency
of clients and context providers is very low because the clients have to explicitly
deal with the context. In addition, there is no facility for discovering context
providing components such that clients have to have explicitly knowledge of
context providers they use. The component interaction styles are basic – polling
and callbacks are supported but there are no mechanisms specifying semantic
relevance conditions besides listening to named callbacks which are particular to
singe widgets. Besides using an HTTP and XML based remoting protocol the
Context Toolkit does not use any of the above standards. High-level contexts
may be derived by composing several widgets but this functionality would have
to be implemented by the aggregators individually. Semantic inference of higher-
level contexts and would be hard to accomplish with this low degree of formality
in the context representation.

The main focus of RCSM lies on providing an ORB-based middleware in-
frastructure where context is fully transparent to the distributed objects (which
could in a broader sense be considered services). The context-management is
not described in detail. It thus lacks a clear separation of context-management
concepts. There might be abstraction from sensor data in RCSM but this is
not explained by its authors. It is, however, certainly the most advanced sys-
tem in terms of indirectness and transparency, since the implementations of the
distributed objects never explicitly request or handle contextual information.
Therefore, interactions take place only between the middleware and the object
containers upon the satisfaction of certain context conditions. Standard lan-



guages are not used by RCSM. Sophisticated semantic context reasoning is also
not described for RCSM.

CAMUS takes the most thorough approach to separating the concepts of
context management providing detailed descriptions on all of the concepts and
separating them into a layered architecture. The abstraction from sensor data
is very high and increases from lower to higher levels. Transparency in the use
of contextual information is low, since clients using contextual information have
to explicitly declare which contexts they are interested in and therefore have
to explicitly process notifications from the context aggregators. The component
interaction style supports polling as well as registering notifications on the ag-
gregators. It is however not discussed by the authors how relevance filters can
be applied to the notification mechanisms of context aggregators. CAMUS uses
standard languages such as OWL for describing and RDQL for querying on-
tologies. The reasoning facilities in CAMUS are highly extensible. In addition
to allowing various ontology reasoners to be plugged into the architecture it is
also possible to use machine learning techniques in order to derive contextual
information from vague or incomplete input data.

CoOL is mainly described as a joint language for representing contextual in-
formation. Its authors also propose a middleware approach for bringing context-
awareness to service-oriented architectures. The concepts of context management
are well separated. The authors, however do not mention how the context data
repository interacts with the sensor data. The abstraction from raw sensor data
is very high due to the formal ASC models which allows for conversion between
data on different scales. Clients using contextual information provided by CoOL
have to explicitly deal with the contextual information leading to a low rating
for this criteria. The interaction style is advanced. Clients can specify the con-
textual information that is relevant to them using the F-Logic language leading
to relevant notifications only. But clients still have to decide actively in what
way their behavior is influenced by the context change. CoOL also makes use
of the OWL standard. For some tasks it uses F-Logic but claims to be able to
interconvert these two languages. For high-level context inference it relies on a
single but very powerful inference engine.

SOCAM is the system which most explicitly emphasizes the use of a service-
oriented architecture. For SOCAM, the concepts of context-management can be
separated into different services where each higher-level service is a client to a
lower-level service. This separation is, however, not enforced by the architecture
since arbitrary clients could in principle access lower-level context-aware services.
Abstraction from sensor data is mainly provided by the so-called interpreters.
These integrate multiple lower-level context-aware services in order to reason
about context. The indirectness of the communication between clients and con-
text providers is low, since they clients interact directly with located context
providers. Contextual information can still be used in a transparent matter be-
cause SOCAM supports a special style of interaction. In addition to polling and
notifying, SOCAM supports the registration of first-order-logic statements on
the interpreters which cause an operation on a service to be called upon the ar-



rival of a certain context condition. As a consequence the implementation of this
service can be completely unaware of the context management itself. SOCAM
is another system that uses OWL for context representation but complements
it with its own OWL-like query language and a first-order-logic language, which
uses OWL resources to denote contextual facts. SOCAM provides high-level in-
terference mechanisms based on ontologies but also allows their circumvention
by giving direct access to context providers.

6 Conclusion

In this paper we presented and evaluated several systems that can be applied to
combine context-awareness and service-oriented architectures. From these sys-
tems we derived common concepts of context-management which are driven by
different types of context models. These concepts were proposed as layers for
a layered reference architecture. The inspected systems were then evaluated ac-
cording to their fulfillment of the reference model and other criteria we defined for
asserting the appropriateness of systems for context-awareness and the service-
oriented paradigm.

The list of systems we presented is not meant to be a complete reference to
context-awareness and service-oriented architectures. We chose some exemplary
and well-documented systems in order to demonstrate possible approaches in-
depth on a limited number of systems. Future systems might build upon the
foundations laid by the ones presented in this paper to use context-awareness
in service-oriented architectures in a flexible and transparent way. Context-
management in large service-oriented environments, however, remains a chal-
lenging task. The systems presented in this paper provide technical frameworks
– the challenge lies in applying them to intra- or even interorganisational en-
vironments. The difficulties of providing comprehensive ressource descriptions
and ontologies are apparent in the relatively slow proceedings of the Semantic
Web Initiative. The rather diffuse Web2.0 movement proposes more pragmatic
approaches for meta-data generation relying on the collaborative power of its
communities. This is comparable to the term-based context models used by
CSDS. These methods however, aim at narrowing a set of choices to be made
by a human user and are not suitable for decisions to be made by computers
in a service-oriented environment. Future research has to provide methods for
collaborative creation and management of formal context models that form the
core of high-level context-aware systems.
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