
Practical Course
eXtreme Programming

Organized by
Prof. Dr. Armin B. Cremers, Holger Mügge, Pascal Bihler, Mark Schmatz

B-IT/IPEC
Summer School 2007

Bonn-Aachen International Center
for Information Technology

Established in fall 2002 by:

International Program of Excellence (IPEC)

„The International Program of Excellence in Computer Science (IPEC)
at the B-IT offers, mainly in the time between terms, compact
teaching units on the highest level. This results in a speed-up of
studying and in a simultaneous increase of quality.“

eXtreme Programming

An Introduction

What is Extreme Programming?

• XP is a …
– lightweight,
– efficient,
– low-risk,
– flexible,
– predictable,
– scientific and
– fun

… way to develop software.

• Kent Beck, eXtreme Programming eXplained, Addison Wesley 1999

How expensive is change?
• Traditional view / Experience

C
h
an

ge
 c

os
ts

Elicitation Analysis Design Implementation Testing Deployment Deployed

Exponential growth

How expensive is change?
• Agile view / Experience

C
h
an

ge
 c

os
ts

Progress

Growth of
change costs

can be controlled

This is the core
assumption (and goal)

of agile processes.

How can this be achieved? Values!
• Agile Manifesto ought to value…

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

There is value in the right side items, but we value the left ones more.

• Extreme Programming Values

– Communication
– Simplicity
– Feedback
– Courage
– Respect

http://agilemanifesto.org

http://en.wikipedia.org/wiki/Extreme_Programming#XP_values

http://agilemanifesto.org/
http://en.wikipedia.org/wiki/Extreme_Programming#XP_values

How can this be achieved? XP Practices!

Rapid feedback is the secret of success

XP is like driving.

"Driving is not about
getting the car going
in the right direction.

Driving is about
constantly paying

attention,
making

a little correction
this way,

a little correction
that way."

(Kent Beck)

Remain responsive to change at any time

eXtreme Programming

Experiences from our courses

Things that worked! (1/3)
• Refactoring exercise as acceptance test

– Provided a realistic picture of the required skills
– Improved OO knowledge

• Repair a broken JUnit test.
• Refactoring 1: Break dependency cycle

by introduction of observer pattern.
• Refactoring 2: Eliminate code duplication and parallel inheritance

hierarchy by introduction of state pattern.

• Each participants makes himself an expert of a special
area before the beginning of the course
– Necessary because very much knowledge needed
– Makes the value of team communication obvious

• Wiki as a common knowledge base

Things that worked! (2/3)
• First 3 days: Development of a trivial application.

Meanwhile teach…
– XP basics, Test First, Pair Programming

• Four iterations (each at 5 days)
– Structure:

• planning game
• Implementation
• presentation + acceptance test

• Planning poker (see later)
• XP-Game to explain the planning Game

– Clarifies responsibilities of customers and developers
– Demonstrates the value of realistic estimations.
– Sometimes a little bit time consuming. But: Fun!

Things that worked! (3/3)
• Pair Programming
• Daily stand up meeting

– Everybody answers questions like:
• What did I do yesterday?
• What obstacles do I have?
• What am I going to do today?
• What else should the team know about?

– No one gets stuck into problems others could solve.
– Builds team spirit.

• Regular Retrospections
– THE key to excellence by rapid adaptation
– Example: Burn-Down Charts (see later)

• Non-conflicting roles (Keep What and How separate)
– customer ≠ team leader ≠ expert

Planning Poker (adapted from James W. Grenning, Object Mentor, 2002)

• Accelerates story estimation.
• Keeps the whole team involved.

Bricks =
Estimated
effort for a

story

Infeasible
story

Risk that the real effort
might be much higher.

Chance that the real effort
might be much lower.

http://www.objectmentor.com/resources/articles/PlanningPoker.zip

• Mechanics:
– Customer reads a story.
– Each programmer selects

the card corresponding to
his estimate.

– Cards are turned over
simultaneously.

– In case of agreement:
Record the estimate and
move on to the next story.

http://www.objectmentor.com/resources/articles/PlanningPoker.zip

The XP-Game (adapted from Belgian XP/Agile User Group)

Clear responsibilites
(„We are developers“)

Funny
„stories“ to

„implement“

Story descriptions.
Business value
printed on each

card.

Already used
planning poker like
in the real planning

game.

http://www.xp.be/xpgame.html

http://www.xp.be/xpgame.html

Simple Design, Testing
• Simple Design

– (+) CRC cards nice tool for fast architectural sketches
– (−) Difficult to get everybody involved
– (+) Explore protocols by role playing simulations
– (−) Hard to explain the difference between simple and quick

premature design

• Testing
– Recommended but rarely practiced by the students
– Requires severe discipline
– GUI testing is really hard
– Round trip testing even harder (Java Compiler

JTransformer Prolog Predicate Evaluation)
– Untested code forms legacy code after the course

Tracking
• Essential to estimate capacity of the next iteration

• Motivation for tracking (estimation + consequent
logging of time spent) is hard to find:
– The XP coach really has to care about this
– Fast feedback about the quality of the estimates might help

(Exercised once)
– Hard to avoid to pessimistic estimates
– Burn down charts (see SCRUM) might be a better way because

they constantly visualize the remaining effort

• Virtual unit for effort (bricks, see above)
– facilitates relative estimates
– are not always taken serious

Burn-Down Charts

Reality Check

• The “ideal world” of our courses
– Our customer is much more friendly than real customers

usually are.
– Employees have much more interfering responsibilities

than our students have for the time of the course.

• Problems that also occur in the “real world”
– Development teams are seldom self-organizing

• But those, that are, are the best

– Building a reliable testbed is really hard

b-it: Excellent working environment

Our practical courses

What we are offering the students...
• Good supervision

– 2 (+4) research associate for 12 students
– ... 8 hours a day!

• Ideal working environment
– Our own office
– Up-to-date technical equipment (computer, beamer)
– Wikis, Eclipse, UMPCs, ...

• An interesting and realistic project
– Developing process is an essential parts of research projects
– Industry partner ensures quality of product

• A certificate after four and a half weeks
– ECTS Credit Points 10

The „products“ of the practical courses
Rich Client Applications on Mobile Device

• 2006b: Context Sensitive Mobile Application (CSI Navigator)

• 2005b: Context Sensitive Mobile Application (CSI PimPro)

Plug-Ins for the Java Development Platform Eclipse

• 2005a: Visual Tool Support for Refactoring to Pattern (Cultivate,
PatchWork)

• 2004b: Program Analysis by Logic Meta Programming
(JTransformer, Cultivate)

• 2004a2: Tool Support for Pattern Management (PatchWork)

• 2004a1: Synchronized Logic Representation of Java Code
(JTransformer)

• 2003b: Improved Editor for Conditional Transformations
(ConTraCT) [based on the result of two earlier practical courses]

The CSI project

Towards
Context Sensitive Intelligence

What is the team you‘re working with?

• The Context Sensitive Intelligence Project
– funded by Deutsche Telekom Laboratories

– focuses on
• context-sensitive adaptations
• the developer view

– aims for
• minimal anticipation
• automatic adaptation

Status Quo of Context-Aware Systems (1)

Context Management

Sensors

Context-Aware Application

Context-based logic

Context-specific
functionality variants

Context-Awareness is preplanned and
built into the applications

Basic functionality

Status Quo of Context-Aware Systems (2)
Context-Awareness today is characterized by:
• Planned and built in context-sensitivity (what context to

take into account)
• Predefined context-based logic (when use which

functional variant)

Recent developments allow for:
• Dynamic Sensor Integration (e.g. use external sensors

when available)
• Automatic Adaptivity (poll context and determine

adaptation automatically)

Mobile Computing needs more Flexibility
Our View:
• Mobile Devices are capable of many more context-

specific user support
• Web-Based Services will soon be ubiquitously available
• Most situations and functional requirements can not be

anticipated and preplanned in detail

Therefore:
• Application should support unanticipated adaptivity
• Dynamic integration of new functionality is needed

A Concrete Scenario

Business user visiting
a trade fair:

• Many different meetings

• Tight schedule

• Has a lot of documents

• Documents are complexly
related to meetings

Needs prompt access
to relevant documents

Mails

Bookmarks

Notes

Solution – Personal Information Prompter

• Idea:
– Highlight or filter relevant data according to the stand the user

is currently located close to.

• Means:
– Detect current user location
– Find closest stand on fair map
– Stands described by keyword lists
– Documents can be indexed

Document relevance for stand can be assessed

Solution – Adapted Applications

• Adaptation cross-cuts multiple applications
• Adequate for different base applications

Main Challenge
This scenario
• is useful for the user
• can not be predicted

The main challenge:
• developers of mail client, notes tool etc. are not able to

plan for it

The Goal of the CSI Project:
• allow for unplanned adaptations
• apply up-to-date methods

The CSI Approach

Context Management

Sensors Context-Aware Application

Context-based
logic aspects

Context-specific
services

Context-Awareness and context-specific functionality is
woven into the applications at runtime when appropriate

Basic functionality
with variation points

woven at runtime

Requirements & Means
The CSI Approach presupposes:
• A Service-Oriented Architecture
• Abstract Preparation in terms of Semantic Annotations

The CSI Approach utilizes:
• Runtime Aspect-Orientation
• Access to Context Data within Aspects
• Realization of Virtual Services from Annotated

Semantics
• Detection and Context-Sensitive Assessment of Web-

based Services
• Runtime Weaving and Reconfiguration of Services and

Compositions

Realization for our Example

Service-Oriented Platform

Fair System

Mobile Device

Local
Documents

Stand
Descriptions

Mail Client etc.

Indexing Index
Comparator

Document
Filter

Indexing

DocumentContainer

Context-Awareness

Characteristics
• continuously at runtime
• sensor based
• planned context-sensitive behavior

CSI supports
• Context-Management based on Logic
• Including Ontological descriptions (OWL)
• dynamic Sensor-Integration

Adaptivity

Characteristics
• seldom occurring
• at runtime
• event-based
• changes user software / configuration

CSI supports
• Plain OO Coding
• Service-Oriented Architectures

Anticipation

Anticipated Unanticipated

Context-
Awareness

Self-contained context-
aware applications

Dynamic sensor
integration

Adaptivity Plug-Ins, Planned
reconfiguration

Using standard
applications for new
purposes

Refactoring to Adaptive Design

Features:
• no preconditions
• helps introducing good design
• in particular to prepare flexibility

Drawbacks:
• adaptivity relies in detail on common

implementations (Java Interfaces)
• adaptation specificities need to be

implemented manually

Context-aware Service Aspects

Features:
• implementation effort for adaptation

drastically reduced (service management)
• context-awareness enabled
• anticipation reduced to service level

Drawbacks:
• applications must be tailored appropriately

in advance
• potential adaptivity must be foreseen and

considered in architecture

Annotated Semantic Structures

Features:
• reusable semantic concepts predefined
• declarative style
• consistency checks and further editing

support
• semi-automated converting to services

Drawbacks:
• extensive description instead of

anticipation

Five ways to Adaptivity

Refactoring to Adaptive Design (RAD)

Context-aware Service Aspects (CSA)

RAD

Annotated Semantic Structures (ASS)

RAD

CSA

CSA

ASS CSA

This year‘s scenario

Adaptive Mobile Gaming

What are we developing this time?
• Customer has developed tools, to condition existing applications

for adaptation
– Integrated into Eclipse
– Focusing on Design Patterns, Services, Aspects, and Annotations

• Customer wants to evaluate these tools

• Example:
– Existing calendar

application needs to be
made adaptive to support
other usage scenarios.

The scenario
• Use case: Adaptive Mobile Gaming
• Mobile Games:

– PDA/UMPC based
– Use context data
– Augment reality

supported by:

Move Legacy code to adaptation
• A simple version of the game alread exists
• It needs to be made adaptable

Studious and productive collaboration

Satisfied students, associates and prof.

	Practical Course�eXtreme Programming
	Bonn-Aachen International Center �for Information Technology
	eXtreme Programming
	What is Extreme Programming?
	How expensive is change?
	How expensive is change?
	How can this be achieved? Values!
	How can this be achieved? XP Practices!
	Rapid feedback is the secret of success
	Remain responsive to change at any time
	eXtreme Programming
	Things that worked! (1/3)
	Things that worked! (2/3)
	Things that worked! (3/3)
	Planning Poker (adapted from James W. Grenning, Object Mentor, 2002)
	The XP-Game (adapted from Belgian XP/Agile User Group)
	Simple Design, Testing
	Tracking
	Burn-Down Charts
	Reality Check
	b-it: Excellent working environment
	Our practical courses
	What we are offering the students...
	The „products“ of the practical courses
	The CSI project
	What is the team you‘re working with?
	Status Quo of Context-Aware Systems (1)
	Status Quo of Context-Aware Systems (2)
	Mobile Computing needs more Flexibility
	A Concrete Scenario
	Solution – Personal Information Prompter
	Solution – Adapted Applications
	Main Challenge
	The CSI Approach
	Requirements & Means
	Realization for our Example
	Context-Awareness
	Adaptivity
	Anticipation
	Refactoring to Adaptive Design
	Context-aware Service Aspects
	Annotated Semantic Structures
	Five ways to Adaptivity
	This year‘s scenario
	What are we developing this time?
	The scenario
	Move Legacy code to adaptation
	Studious and productive collaboration
	Satisfied students, associates and prof.

