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ABSTRACT 

This work presents a new approach to the problem of relative position estimation for multi 
robot systems. It also creates the basis for establishing and maintaining a common co-ordinate 
system for a group of robots. The information of a laser scanner system mounted on each of 
the robots is used to calculate the relative position of each of the surrounding robots. The 
measured movement of each robot is compared to the reported movement and laser readings, 
which are communicated between the robots. From this comparison, a co-ordinate 
transformation is calculated. Once the transformation is calculated, a Kalman Filter is used to 
track the robots positions. The algorithm is implemented on a real multi-robot system. 
Preliminary results of real world experiments are presented. 

1 INTRODUCTION 

When using a multi-robot system in which the robots have to fulfil a cooperative task, two 
typical positioning problems arise: 

• Robust position estimation for each robot itself, and  
• Relative position estimation of the other group members.  

The first problem is typically solved by some kind of simultaneous localisation and map 
building (SLAM) method. An important precondition for these methods is that the environ-
ment provides enough features (e.g. landmarks) to give the localisation "a handle to grip on". 
This is not necessarily the case in open space like large hallways or long monotone corridors. 
The second problem especially arises when the robots do not have a common co-ordinate sys-
tem, which is often the case if GPS is not available. Common reference points like landmarks 
or predefined co-ordinate systems must often be specified by an operator. 
Hence, the multi-robot positioning problem asks if it is possible for an autonomous robot to 
start at an unknown location in an unknown environment, and then to incrementally estimate 
its own position and the relative locations of the other robots using only sensor information.  



The answer would be a robust, fast, and precise method that does not need any preconditions 
or special assumptions about the environment. This paper presents such an approach to rela-
tive position estimation in a group of robots, which is based on sensor and odometry informa-
tion only. The method is divided into two stages. First, each robot scans its surrounding envi-
ronment for moving robots. Whenever a robot moves and therefore its position inside the sen-
sor field changes, the movement with respect to the sensing robot’s co-ordinate system can be 
measured. The results of these observations are then communicated to the other robots. By 
comparing that movement with the one the moving robot itself reports, it is possible to calcu-
late the transformation matrix between the co-ordinate system of that robot and the common 
relative co-ordinate system. 
Based on this information each robot can estimate the relative positions of all visible robots 
and use them as landmarks to improve its own position estimation. This again results in better 
estimates for the localisation of the other robots, which in turn results again in a better local-
isation for the robot itself.  
While most localisation techniques are based on global strategies that make use of special 
landmarks or other kinds of a priori knowledge, the described method uses only local infor-
mation. It also allows introducing a method for establishing a common co-ordinate system 
with reference only to the robots themselves. (We will call this a ’relative’ common co-
ordinate system throughout the rest of this manuscript.) Since it is not possible to map such a 
relative co-ordinate system to any system of global world co-ordinates, it is of course not use-
ful for all multi robot applications. Nevertheless, for most navigation problems it is sufficient, 
for example moving in formation and exploration. 

2 RELATED WORK 

The problem of single robot localisation is widely studied in the literature [12, 13, 14, 15]. 
Most of the approaches to SLAM can roughly be classified by the kind of sensor data proc-
essed and the matching algorithms that are used. One method is to extract landmarks out of 
the data and match these landmarks to localize the robot in the map being learned. The other 
set of approaches use raw sensor data and perform a dense matching of the scans. All these 
approaches have the ability to cope with a certain amount of noise in the sensor data, but it is 
assumed that the environment is almost static during the mapping process. 
In the recent years, the problem was extended to multi-robot localisation [18, 19, 20]. The 
major difference to these approaches is that most of them use maps and/or landmarks. 
Some authors worked on similar concepts using vision in order to reduce the odometry error 
of a single robot system. Murray [6] and Braithwaite [1] use a movable stereo camera system 
to follow remarkable points in the surrounding environment. Using the measured distances 
and rotation angles of the camera, they calculate the current movement of the robot. 
In several approaches, these results are transferred from a single to a multi robot system. 
Some authors add additional global information sources like GPS to achieve greater accuracy 
[2, 9], whereas others restrict to the robot group itself. Kurazume et al., for example, develop 
a so-called Cooperative Positioning System (CPS) [4, 5], other similar ideas can be found in 
[7, 8]. Since in these latter works the aim is to generate and maintain a global co-ordinate sys-
tem, a great accuracy is needed. Just one robot moves at any given period of time, while the 
others are standing still, thereby functioning as ‘temporary’ landmarks. Suzuki and Yamashita 
[11] present an approach to building a common co-ordinate system in which all robots may 
move simultaneously, but they use a simulated and somewhat idealised robot system. In their 
simulation, for example, every robot has a full 360-degree view and is capable of error-free 
measurement of the relative positions of the other robots. 



A quite similar approach to ours can be found in [3]. The main difference is that we use a 
Kalman-Filter based approach. The particle filter needs in contrast to the Kalman filter much 
more computing power and is mathematically more difficult to handle. 

3 THE ALGORITHM 

As described in the introduction a two-step approach is used to estimate the positions and to 
establish the common co-ordinate system. The first step consists of detecting the moving ro-
bots. This information is shared with the other robots and used to estimate their current loca-
tions, as well as to improve the own position estimation. In the second step these position in-
formation in combination with the robots’ movement data is used to establish and share the 
so-called ’relative’ common co-ordinate system. 

3.1 Estimating the robots relative positions 
The first step of our algorithm is an estimation of the observed robots distance and angle rela-
tive to the observer. The observers use SICK-PLS Laser scanners, which generate a 180-
degree scan of the area in front of the observer in a frequency of about five scans per second.  
Since sensor interpretation was not the main goal of our paper, we used a rather simple 
method for finding the observed robot in the data, which produced good results as long as the 
observer himself is not moving. This method will be replaced in the future with a tracking 
method for moving observers. Based on a history table of the last few scans, which serve as 
some kind of local map, a moving object in the sensors field can be found quite easily, since 
the readings in the direction of the moving object have to be shorter than in the local map. 

3.1.1 Fixed Observer 

 
Figure 1 – Decomposition of observer position 

Consider a moving robot travelling from point P1 to point P2, while being watched from an 
observer O (Figure 1 left). Given both distances d1 and d2, there are two possible solutions for 
the position of the observer (both intersections of the two circles). Given the leading sign of 
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of the beam which hit P2 from the number of the beam which hit P1.) 
Given both positions P1 and P2, together with the calculated position of the observer, a trans-
formation matrix A can be calculated, which transforms the coordination system of the ob-
server to the coordination system of the travelling robot. When one robot is travelling, while 
being watched from multiple overseers, we can calculate such a matrix for each observer, 
leading to a common coordination system.  



3.1.2 Moving Observer 
Consider a situation similar to the last paragraph, but let the observer move from a position O1 
to O2, while the observed robot travels from point P1 to P2 (Figure 1 right). Contrary to the 
situation before, even if we have information about the travelled distances and the measured 
distances between the observing and the observed robot, there are still infinite possibilities for 
the relative position of the� URERWV�� +RZHYHU�� JLYHQ� WKH� DQJOH� � DQG� � MXVW� RQH� VROXWLRQ� Ue-
mains. As before, we can calculate a transformation matrix A for the observer, which trans-
forms coordinates in the observers coordination system to the coordination system of the ob-
served robot. After calculating this transformation matrix, an observer can transform his esti-
mates of the observed robots position from his personal coordination system to this common 
coordinate system, which all robots share.  

3.2 Using the Kalman filter to track the robot 
Once the transformation matrix for an observer is calculated, the observer can make estimates 
of the tracked robot and transform them to the coordination system of the tracked robot. This 
estimates can be joined by a Kalman filter leading to a common track-estimate of all tracking 
observers. We therefore define the state of the tracked robot as vector  

x(k) = [px(k), py(k)]T. 
The information gained by the odometry is used for the prediction-step of the Kalman filter. 
So let the control input for the prediction step be: 

u(k) = [∆px(k), ∆py(k)]T  
(This information cannot be taken directly from the odometry, since it would suffer from er-
rors in the robots angle. The robots real angle can be derived from a small history of posi-
tions. Given this correction u(k) can be correctly calculated. This is a somewhat sloppy 
method, but proves quite okay in practice.) 
Then the state prediction can be written as:  

x- (k) = [x(k-1)+u(k))]T 

The correction step of the Kalman filter is based on the estimation of an observer let the esti-
mation be: 

z(k+1) = [estx(k) , esty (k)]T 

So, the correction step can be written as: 
x(k) = x-(k) + K (z(k) – x-(k))  

whereas K denotes the Kalman gain. For details about the Kalman filter, refer to [16]. 

4 EXPERIMENTAL SETUP 

4.1 Real world experiments 
The experiments were conducted in the "Experimental Human Multi Robot System" labora-
tory of the FGAN. The experimental set up consists of a more or less empty hall of the size 18 
x 15 meters, one B21 from iRobot, and four Pioneer I robots from ActivMedia. All robots are 
equipped with odometry, SICK laser scanner and radio Ethernet. In these first experiments, 
the four Pioneer robots were used as the observing robots. The B21 was used as the moving 
target to be observed by the other robots. Four different routes were used in the experiments 
(Figure 2).  

4.2 Simulations 
While our main target is to demonstrate our algorithm during real world experiments, we also 
conducted some simulation runs of the software. Simulation gives us the advantage of a 



grand-truth trajectory of the observed robots, allowing us to make some statements about the 
deviation of the estimation compared to the real position of the observed robot. During our 
simulation runs, we created a somewhat idealistic version of the real experimental hall. It is 
bigger (20x20 Meters) and quadratic in shape. We used about the same control input and 
therefore created very similar trajectories. While comparing simulated odometry (with simu-
lated errors) to our observed track is of limited utility, it is interesting to compare the real po-
sition in the simulation to our observed track.  

 
Figure 2 Planned Trajectories 

5 RESULTS 

5.1 Real World Experiments 
As can be seen in figures 3 and 4 our algorithm determines the position of the observers quite 
correct and tracks the robot over the full distance. Due to the nature of the Laser-Range-
Scanner, there is always a small error in the determination of the observed robots position, 
resulting from the fact, that it is quite difficult to determine the exact angle of the observed 
robot in the observed coordinate system. This leads to some kind of jitter-effect in the estima-
tions, which could be coped by applying another linear filter. 

 

Figure 3 Real world experiments - Odometry Data 

 
Figure 4 real world experiments - Tracking results 

One of the most challenging experiments concerning the odometry is the so-called square ex-
periment. In this set-up, the robot moves on a route that describes a square. Having perfect 
odometry and traction the robot should exactly arrive at the starting point after completing the 



square route. Since most of the errors of the odometry result from rotation rather then from 
translation, in reality it is very unlikely that the robot will close the square. The localisation 
problem arises from the fact that the odometry does not recognise these errors. In the pre-
sented experiments, a typical SLAM method was used for comparison. Figure 5 shows three 
different outputs of the same track. The little (right) part of figure 5 shows the odometry data, 
while the bigger (left) part shows track estimates from the Kalman filter (painted in dark grey 
lines, also recognize the jitter) compared to the estimates of a SLAM Algorithm (painted in 
light grey dots). The four diamonds represent the estimated observer positions. As can be seen 
the trajectory of the odometry shows almost no deviation from the original controller input. 
All tracks are close together. The SLAM algorithm instead gives a quite more realistic view 
of the real trajectory. 

  
Figure 5 - Square Experiment 

The Kalman Filter gives a very good estimate of the observed robots motion. While dead 
reckoning fails apparently after one full rectangle, our Kalman Filter is able to track the robot 
for the full distance. The trajectories of the Kalman Filter and SLAM agree on the same tra-
jectory, varying only about 10 cm. Considering the robot’s radius, which is about 23 cm, this 
error is quite small. 
The "global" approach of the SLAM will improve as more features are in the area, our ap-
proach will improve, as more observers are available. While it is easy to co-ordinate the ro-
bots to visit or to stay in each others field of view, providing landmarks is somewhat artificial 
depending on the environment or application and sometimes even beyond the influence of the 
operator. The compared SLAM Algorithm is an implementation of laser-scan matching [17]. 

5.2 Simulation Experiments  
As can be seen in figure 6 the filter shows about the same behaviour as in the real world ex-
periments, including the jitter, which results from the errors in the tracking process. Different 
from the real world experiments, we can draw some quantitative conclusions from this data, 
since we can use the real trajectory drawn from the simulator itself compared to the estima-
tions of the Kalman-Filter. Calculated over the full tracking time, the filter is never more than 
80cm off the tracked target, while the average deviance is less than 11cm.  



 
Figure 6 - Simulation Run 

6 CONCLUSIONS 

Within this work, the authors present a new approach to the problem of establishing and 
maintaining a common co-ordinate system for a group of robots. A laser range finder in com-
bination with a tracking process is used to calculate the relative position of each surrounding 
robot. The moving robot uses it as input to a filtering process, which corrects its odometry 
based position information. This process is implemented by a Kalman filter. In addition to the 
correction of the moving robot’s odometry, also the position and orientation of each observing 
robot is updated. This position information is used to generate and maintain a so-called rela-
tive common co-ordinate system among all robots in the group. 
First experiments with real robots were performed and produced promising results. The track-
ing process generates consistent position information for the other visible robots. It is shown 
that the resulting position information for the moving robot is comparable in accuracy to other 
well-known localisation strategies. 
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