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Orléansstrasse 34 Roemerstr. 164

D-81667 Munich, Germany D-53117 Bonn, Germany
beetzm@in.tum.de belker@cs.uni-bonn.de

ABSTRACT
Autonomous robots, such as robot office couriers, need naviga-
tion routines that support flexible task execution and effective ac-
tion planning. This paper describes XFRMLEARN, a system that
learns structured symbolic navigation plans. Given a navigation
task, XFRMLEARN learns to structure continuous navigation be-
havior and represents the learned structure as compact and trans-
parent plans. The structured plans are obtained by starting with
monolithical default plans that are optimized for average perfor-
mance and adding subplans to improve the navigation performance
for the given task. Compactness is achieved by incorporating only
subplans that achieve significant performance gains. The result-
ing plans support action planning and opportunistic task execution.
XFRMLEARN is implemented and extensively evaluated on an au-
tonomous mobile robot.

1. INTRODUCTION
Robotic agents operating in human working environments and

solving dynamically changing sets of complex tasks are challeng-
ing testbeds for autonomous robot control. The dynamic nature
of the environments and the nondeterministic effects of actions re-
quires robots to exhibit concurrent, percept-driven behavior to re-
liably cope with unforeseen events. Moreover, acting competently
often requires foresight and weighing alternative courses of action.

Different approaches have been proposed to specify the navi-
gation behavior of such service robots. A number of researchers
consider navigation as an instance of Markov decision problems
(MDPs). They model the navigation behavior as a finite state au-
tomaton in which navigation actions cause stochastic state transi-
tions. The robot is rewarded for reaching its destination quickly
and reliably. A solution for such problems is a policy, a mapping
from discretized robot poses into fine-grained navigation actions.

MDPs form an attractive framework for navigation because they
use a uniform mechanism for action selection and a parsimonious
problem encoding. The navigation policies computed by MDPs aim
at robustness and optimizing the average performance. One of the
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main problems in the application of MDP planning techniques is to
keep the state space small so that the MDPs are still solvable. This
limits the number of contingent states that can be considered.

Another approach is the specification of environment- and task-
specific navigation plans, such as structured reactive navigation
plans (SRNPs) [1]. SRNPs specify a default navigation behavior and
employ additional concurrent, percept-driven subplans that over-
write the default behavior while they are active. The default nav-
igation behavior can be generated by an MDP navigation system.
The activation and deactivation conditions of the subplans struc-
ture the continuous navigation behavior in a task-specific way.

SRNPs are valuable resources for opportunistic task execution
and effective action planning because they provide high-level con-
trollers with subplans such as traverse a particular narrow passage
or an open area. More specifically, SRNPs (1) can generate quali-
tative events from continuous behavior, such as entering a narrow
passage; (2) support online adaptation of the navigation behavior
(drive more carefully while traversing a particular narrow passage),
and (3) allow for compact and realistic symbolic predictions of con-
tinuous, sensor-driven behavior. The specification of good task-
and environment-specific SRNPs, however, requires tailoring their
structure and parameterizations to the specifics of the environmen-
tal structures and empirically testing them on the robot.

We propose to bridge the gap between both approaches by learn-
ing SRNPs from executing MDP navigation policies. Our thesis is
that a robot can autonomously learn compact and well-structured
SRNPs by using MDP navigation policies as default plans and re-
peatedly inserting subplans into the SRNPs that significantly im-
prove the navigation performance. This idea works because the
policies computed by the MDP path planner are already fairly gen-
eral and optimized for average performance. If the behavior pro-
duced by the default plans were uniformly good, making navigation
plans more sophisticated would be of no use. The rationale behind
requiring subplans to achieve significant improvements is to keep
the structure of the plan simple.

2. AN OVERVIEW ON XFRMLEARN
XFRMLEARN is embedded into a high-level robot control sys-

tem called structured reactive controllers (SRCs) [1]. SRCs are are
controllers that can revise their intended course of action based on
foresight and planning at execution time. SRCs employ and rea-
son about plans that specify and synchronize concurrent percept-
driven behavior. Concurrent plans are represented in a transparent
and modular form so that automatic planning techniques can make
inferences about them and revise them.

XFRMLEARN is applied to the RHINO navigation system, which



a b c

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������������

�������
�������
�������
�������
�������

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	


�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�


�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����
�����
�����
�����


�
�


�
�


�
�


�
�


�
�


�����
�����
�����
����� �����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����������

�����
�����
�����

�����
�����
�����
�����

Figure 1: Behavior trace of the default plan (a). Low T-Vel subtraces (b). Learned SRNP (c).

conceptually works as follows [3].. A navigation problem is trans-
formed into a Markov decision problem to be solved by a path plan-
ner using a value iteration algorithm. The solution is a policy that
maps every possible location into the optimal heading to reach the
target. This policy is then given to a reactive collision avoidance
module that executes the policy taking the actual sensor readings
and the dynamics of the robot into account.

XFRMLEARN executes an “analyze, revise, and test”, starting
with a default plan that transforms a navigation problem into an
MDP problem and passing the MDP problem to RHINO’s naviga-
tion system. After RHINO’s path planner has determined the nav-
igation policy the navigation system executes the resulting policy.
XFRMLEARN records the resulting navigation behavior and looks
for stretches of behavior that could be possibly improved. XFRM-
LEARN then tries to explain the improvable behavior stretches us-
ing causal knowledge and its knowledge about the environment.
These explanations are then used to index promising plan revision
methods that introduce and modify subplans. The revisions are
then tested in a series of experiments to decide whether they are
likely to improve the navigation behavior. Successful subplans are
incorporated into the symbolic plan.

3. EXPERIMENTAL RESULTS
To empirically evaluate XFRMLEARN we have performed two

long term experiments in which XFRMLEARN has improved the
performance of the RHINO navigation system, a state-of-the-art
navigation system, for given navigation tasks by up to 44 percent
within 6 to 7 hours. A summary of the first session is depicted in
Figure 1. Figure 1(a) shows the navigation task (going from the
desk in the left room to the one in the right office) and a typical be-
havior trace generated by the MDP navigation system. Figure 1(b)
visualizes the plan that was learned by XFRMLEARN. A typical
behavior trace of the learned SRNP is shown in Figure 1(c). We
can see that the behavior is much more homogeneous and that the
robot travels faster. The t-test for the learned SRNP being at least
21% faster returns a significance of 0.956. A bootstrap test re-
turns the probability of 0.956 that the variance of the performance
has been reduced. In the second learning session, the average time
needed for performing a navigation task has been reduced by about
44%. The t-test for the revised plan being at least 18% faster has a
significance of 0.952 (see [2]).

4. CONCLUSIONS
We have sketched XFRMLEARN, a system that learns SRNPs,

symbolic behavior specifications that (a) improve the navigation
behavior of an autonomous mobile robot generated by executing
MDP navigation policies, (b) make the navigation behavior more
predictable, and (c) are structured and transparent so that high-level
controllers can exploit them for demanding applications such as
office delivery.

XFRMLEARN is capable of learning compact and modular SRNPs
that mirror the relevant temporal and spatial structures in the con-
tinuous navigation behavior because it starts with default plans that
produce flexible behavior optimized for average performance, iden-
tifies subtasks, stretches of behavior that look as if they could be
improved, and adds subtask specific subplans only if the subplans
can improve the navigation behavior significantly.

The learning method builds a synthesis among various subfields
of AI: computing optimal actions in stochastic domains, symbolic
action planning, learning and skill acquisition, and the integration
of symbolic and subsymbolic approaches to autonomous robot con-
trol. Our approach also takes a particular view on the integration of
symbolic and subsymbolic control processes, in particular MDPs.
In our view symbolic representations are resources that allow for
more economical reasoning. The representational power of sym-
bolic approaches can enable robot controllers to better deal with
complex and changing environmants and achieve changing sets of
interacting jobs. This is achieved by making more information ex-
plicit and representing behavior specifications symbolically, trans-
parently, and modularly. In our approach, (PO)MDPs are viewed as
a way to ground symbolic representations.
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