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Abstract

This paper presents an approach to collision avoidance
for mobile robots that uses local path planning within a
map built from the robot’s latest range measurements fol-
lowed by a search for control commands to steer the robot
towards the goal safely and efficiently. While the search
for control commands allows to take the robot’s dynamics
into account and therefore allows for very smooth navi-
gation behavior, planning is able to determine the opti-
mal path towards the goal and minimizes the likelihood
that the robot gets trapped in dead end situations. We
introduce and compare several approaches, to utilize the
results of path planning in the search for good control
commands. In extensive experiments we show that our
combined approach outperforms a collision avoidance
that is purely based on local planning and we empiri-
cally investigate the pros-and-cons of the different search
strategies for control commands and find one to signifi-
cantly outperform the others.

1 Introduction

Collision avoidance is a crucial part for all autonomous
mobile robots operating in populated and dynamic en-
vironments. In order to navigate savely, they must be
able to react to unforeseen obstacles like humans cross-
ing their paths. For this reason, virtually all navigation
systems comprise some kind of collision avoidance com-
ponent that controls the robot’s motion.

In general, it is also desired that the robot reaches its des-
tination fast. It should therefore take the robot’s dynam-
ics into account and move the robot towards the target
location most effectively. The optimal approach would
be to do an exhaustive search for the sequence of control
commands that achieves the shortest time to target. How-
ever, this approach is computationally expensive and not
suited to issue safe control commands at high frequency.
An exhaustive search in the space of control commands
is therefore not feasible in order to be able to navigate at
high speeds.

Many collision avoidance systems use purely reactive ap-
proaches which allow for high update rates. They decide
on the next control command solely based on different
heuristics. However, as no planning is involved, these

approaches risk that the robot gets trapped in dead end
situations like for example u-shaped obstacle configura-
tions.

In this paper we present an collision avoidance approach
that uses local path planning followed by a search for the
best next motor control command given the current plan.
Local path planning finds the shortest path within a map
built from the robot’s latest range measurements, and can
be carried out much faster then a search for the optimal
sequence of control commands. That way, we reduce the
risk of getting stuck in local minima and still achieve the
high update rates required for fast navigation.

The crucial aspect of this hybrid reactive approach of
course is, how to decide on the control commands based
on a plan. A simple approach would be to stick to the
planned path as close as possible. However, as path plan-
ning does not respect the robot’s dynamics, this can result
in poor performance. In this work, we consider path plan-
ning systems that assign a utility value to each state in the
state space. For this purpose, we formalize the navigation
problem as a Markov Decision Process (MDP) which al-
lows us to use dynamic programming algorithms to effi-
ciently compute optimal utility functions for it.

We introduce different evaluation functions that employ
the utility function computed in the planning step to eval-
uate control commands. We compare the performance of
these functions in extensive experiments carried out with
a differential drive robot within our office environment.
In these experiments we find one evaluation function to
significantly outperform the other evaluation functions,
especially the one that models a path following algorithm.

The remainder of this paper is organized as follows. Af-
ter discussing related work in Section 2, we describe how
to compute optimal utility functions that can be used to
evaluate control commands in Section 3. Section 4 de-
scribes in detail, how the evaluation of the performance
of control commands is based on the utility function com-
puted in the planning step and we introduce the different
evaluation functions we have developed. In Section 5, we
give results on the performance of our collision avoidance
method using the different evaluation functions.



2 Related Work

Most existing collision avoidance methods are purely re-
active in the sense that they search for safe robot control
commands based on the robot’s current proximity sen-
sor data without any projection of the robot’s future state.
These methods differ in the way this search is carried out.
The Vector Field Histogram method [1] for example de-
cides on the next movement direction and the speed of
the robot based on an angular histogram, which describes
the density of obstacles in the surrounding of the robot.
Potential field methods [7] achieve collision avoidance
behavior by simulating repulsive forces exerted from ob-
stacles and an attractive force towards the target. Both
approaches do not explicitly take the constraints imposed
by the dynamics of the robot into account. Koren and
Borenstein [6] identify two major problems of potential
field approaches: They often fail to find trajectories be-
tween closely spaced obstacles and can produce oscilla-
tory behavior in narrow passages. Behavior-based nav-
igation system are composed of at least two behaviors.
An approach target behavior and a collision avoidance
behavior. While arbitration shemes based on voting, are
often not able to take dynamic constraints into account,
a decision-theortic arbitration scheme recently proposed
by Rosenblatt [8] is.

Another popular method, which is more closely related
to our approach is the dynamic window approach to col-
lision avoidance [3, 10, 9]. This method searches for the
trajectory the robot should take within the next time step
based on a local map of the robot’s surrounding built from
the latest sensor measurements. A trajectory is specified
by the translational and rotational velocity of the robot
and the search is carried out in this velocity space. In or-
der to reduce the search space, the robot’s dynamic con-
straints are taken into account by considering only ve-
locities which can be reached within the next time in-
terval. The approach decides on the best next velocities
based on a linear evaluation function which weighs clear-
ance, heading towards the target and speed. Our method
adopts this search method, but uses new evaluation func-
tions based on the computation of optimal utility func-
tions from a local map.

The major disadvantage of all purely reactive approaches
is that they might get stuck in local maxima of the eval-
uation function. Therefore, more recently, methods have
been developed, which use local planning to overcome
this problem. Ulrich and Borenstein [11] describe an ex-
tension of the Vector Field Histogram method which car-
ries out A-star search on a local map in order to obtain the
best sequence of movement directions towards the target
location. Konolidge [5] uses dynamic programming on
the local map to compute the gradient towards the target.
To make this approach computationally feasible only the
two dimensional space of possible robot positions is con-
sidered for planning. This results in optimal paths with

respect to some cost function but does not allow to model
the robot’s dynamics correctly. In this paper we suggest
a method that simultaneously plans optimal collision free
paths and takes the dynamics of the robot into account.
Like Konolige we use a path planner based on dynamic
programming to compute a utility value for each state
in the state space, but rather than computing an optimal
path from the utility function using gradient ascent, we
directly use the utility function to evaluate control com-
mands. As our experiments show, our method is able to
produce a smoother navigation behavior than a path fol-
lowing algorithm, because it makes a better use of the
computed utility function.

Brock and Khatib [2] developed a similar method for
holonomic mobile robots. They compute a navigation
function which labels each cell in the local grid map with
theL1 distance to the goal. They replace the term for the
target heading and the clearance term in the evaluation
function of the dynamic window approach by two fea-
tures derived from that navigation function. Though the
computed navigation function is guaranteed not to have
local optima, the combined evaluation function is not. In
our approach, however, the evaluation function is directly
derived from the utility function and thus guaranteed not
to have any local optima.

3 Computing Optimal Utility Functions

In this section we discuss how to compute optimal utility
functions for navigation problems. For this purpose, we
introduce Markov Decision Processes (MDPs) which can
model path planning problems very elegantly.

Markov Decision Processes (MDPs) provide a general
framework for the specification of simple control prob-
lems where an agent acts in a stochastic environment and
receives rewards from its environment. A solution to an
MDP is an optimal utility functionV ∗ which assigns a
utility value to each state in the state space. AnMDP is
given by

• a set of statesS,

• a set of actionsA,

• a probabilistic action modelP (S|S,A) and

• a reward functionR : S ×A→ R.

P (s′|s, a) specifies the probability that actiona taken in
states leads to the states′. R(s, a) denotes the imme-
diate reward gained by taking actiona in states. The
property that action effects only depend on the last ac-
tion and the state in which they are executed is called the
Markov property.

The utility of being in states is given by the following
formula:

V ∗(s) = max
a∈A

(R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′)).



Figure 1: Left: The navigation problem. Right: the opti-
mal navigation policy computed by value iteration.

The utility of being in states (when always performing
the best possible action) is thus given by the immediate
reward for executing the optimal actiona in states plus
the expected discounted future reward. The constantγ
is called discounting factor and weighs the expected fu-
ture rewards with respect to how far in the future they
will occur. This formula can be exploited to compute the
optimal value functionV ∗ using dynamic programming
techniques. Kaelbling et al. [4] give a detailed discussion
of MDPs andPOMDPs, a generalization ofMDPs where
the state is not fully observable.

The utility functionV ∗ can be used to select the opti-
mal actionπ(s) in each states according to the Bellman
equation:

π(s) = argmaxa∈A[R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′)].

The functionπ is called policy and assigns to each state
s ∈ S the actiona ∈ A with the highest expected utility.

For illustration, Figure 1 shows a simple grid world navi-
gation problem (the obstacles are marked black while the
goal is marked white) together with the optimal naviga-
tion policy for this problem. The gray scale of each cell
visualizes the utility of this state.

Given a navigation policy it is straight forward to com-
pute a path to the goal using gradient ascent. However,
this leaves us with the problem of how to compute a se-
quence of motor control commands that achieve the in-
tended navigation behavior. In the following we suggest
to use the utility functionV ∗ directly to evaluate control
commands.

4 Evaluation Functions for Control Commands

In this section we describe how we search for admissi-
ble control commands which in the case of synchro-drive
robots can be approximated by simple trajectories. In the
second part of this section we examine how these trajec-
tories can be evaluated using utility functions computed
from MDPs.

4.1 Searching for Control Commands

When using synchro-drive robots each control command
is given by a pair(vo, ωo), the target translational and ro-
tational velocity of the robot. When we assume that the
robot immediately reaches the new velocities and there-
fore ignore boundaries on the maximal positive and nega-
tive accelerations, we can model these control commands
as simple trajectories:(vo, ωo) corresponds either to a
circular trajectory (ifvo > 0 ∧ ωo 6= 0), to a straight
line trajectory (ifvo > 0 ∧ ωo = 0) or to a rotation (if
vo = 0 ∧ ωo 6= 0). As Fox et al. show in [3] the error
we make under this assumption when predicting the po-
sition (x, y) of the robot after∆t seconds is bounded by√

2(∆v)2(∆t)2 =
√

2∆v∆t where∆v = |vt − vt+∆t|.
We can account for this error by thickening the robot and
by keeping the time between two successive control com-
mands small.

If we model control commands and their effects us-
ing these simple trajectories, cutting algorithms can be
used to check whether a trajectory is admissible, that is
whether the robot can stop safely before the next obstacle
on the trajectory. It is also straight forward to project the
state(x′, y′, θ′, v′, ω′) after∆t′ seconds given the initial
state(x, y, θ, v, ω) and the trajectory(vo, ωo). Assuming
that (vo, ωo) can be reached in∆t seconds, the projec-
tion error is bounded as before. The projected state of
the robot after∆t′ seconds can - as we will discuss in the
following - be used to evaluate control commands.

To select a suitable control command we have to search
for admissible control commands in the space of all pos-
sible velocity combinations and then select the one with
the highest evaluation with respect to some given evalua-
tion function. To make this search feasible, only the small
window of this space is considered that is given by the dy-
namic constraints of the robot, namely its maximal veloc-
ities and its maximal (positive and negative) translational
and rotational accelerations together with its current ve-
locity. Given a small constant time∆t, the time the robot
needs for one iteration of the algorithm, these constraints
limit the possible velocity combinations(v, ω) the robot
can reach within this time window.

4.2 Evaluating Control Commands

Under all the admissible trajectories in the window of
reachable velocities one has to be selected according to
an evaluation functionG. Fox et al. [3] propose to use
the class of functions

G(v, ω) = σ (αhead(v, ω) + β dist(v, ω) + γ vel(v, ω))

Here head(v, ω) is 180−∠(v, ω) where∠(v, ω) is the an-
gle to the target after executing action(v, ω) for ∆t sec-
onds, dist(v, ω) is the distance to the closest obstacle on
the trajectory and vel(v, ω) is a projection on the transla-
tional velocityv. The functionσ is a smoothing function



Figure 2: A local map of the robot’s surroundings.

intended to increase the side-clearance of the robot. In
the evaluation function head(v, ω) and vel(v, ω) take the
role of progress estimators, while dist(v, ω) accounts for
the future utility of a trajectory.

However, this class of evaluation functions in general
have local maxima which means that the robot might get
stuck in situations like u-shaped obstacle configurations.
In the following we will discuss how an optimal utility
functionV ∗ can be used to evaluate trajectories. We start
by considering a quite simpleMDP with a two dimen-
sional state space where the robot’s state is only deter-
mined by its position, a deterministic action model and a
distance-based reward function. After that we proceed by
considering more complex reward functions which can
take the robot’s clearance into account as well and we
consider three dimensional state spaces where besides the
robot’s position its orientation is part of its state.

We compute the state space of the robot by discretizing
the local map (obstacle field) of the robot which is build
from its last sensor readings only into quadratic cells.
In our implementation we used a map of10 m × 10 m
and a resolution of10 cm2. Figure 2 shows such a map.
Each cell that contains a sensor reading is marked as a
wall cell. The walls are then thickened which allows to
treat the robot as a point while doing path planning. To
compute the optimal utility of each states we assume
a deterministic action model where the robot can trans-
late to each neighboring grid cell. The reward for an
action a executed in states is r(s, a) = −cost(a) =
−dist(m(s),m(succ(s, a)) wheres(s, a) is the succes-
sor state ofs when executing actiona, m(s) is the mid-
point of the grid cells and dist(p, p′) denotes the euclid-
ian distance between pointsp andp′. (With a resolution
of 10cm2 r(s, a) is thus either−10 or−

√
200).

As we use a deterministic action model we can use Di-
jkstra’s algorithm to computeV ∗(s) for each cells. To
further speed up the algorithm we do not consider wall
cells for expansion. To evaluate trajectories we project
the state(x′, y′, θ′, v′, ω′) after∆t′ seconds given the ini-
tial state(x, y, θ, v, ω) and the trajectory(vo, ωo), map

(x, y) to a states in theMDP’s state space and assign the
utility v(s) to (vo, ωo) wherev(s) is computed fromV ∗

by distance-weighted linear interpolation using all eight
neighbors ofsi includings. We call this evaluation func-
tion distance-based evaluation function(DEF2D).

An obvious extension of theMDP considered so far is to
make the reward for an actiona in states not only de-
pendent on the cost for executing actiona, cost(a), but
on the reward for being in state succ(s, a) = s′ which
results from executinga in s: r(s, a) = −cost(a) +
reward(succ(s, a)) It is reasonable to make reward(s′)
dependent on the clearance of the robot in states′. In
our implementation we have used the following formula:
reward(s′) = −αmax(0, θcl − clearance(s′)) whereθcl

is a threshold value specifing when the robot has enough
clearance. In the experiments we have used the param-
etersα = 10 andθcl = 60. Because of the determinis-
tic action model, we can again compute an optimal value
function for theMDP using Dijkstra’s algorithm. We in-
terpolate the values for this evaluation function like for
DEF2D.

In this case, however, the evaluation of a trajectory should
not only depend on the projected state after∆t′ seconds,
but on the projected states after1

k∆t′, 2
k∆t′, ..., kk∆t′.

We obtain the evaluation as the average evaluation of all
the projected states at these times. We call this evalua-
tion function thedistance- and clearance-based evalua-
tion function(DCEF).

One problem with the evaluation functions developed so
far is that they do not support turns in place. As the eval-
uation of a trajectory only depends on the projected po-
sition (x, y) after∆t′ seconds and this position does not
change for a pure rotation, we cannot model that the robot
should turn in place in some situations. To be able to do
so, we have to introduce an additional dimension to the
state space: the robot’s orientation. To keep things fea-
sible the orientation has to be discretized. In the third
evaluation function we have considered four discrete ori-
entations and the three actions: forward translation, left
turn and right turn. By assigning different costs to for-
ward translations (in the experiments: 10) and turns (in
the experiments: 30) we can bias the robot to prefer to
turn in place rather than make some translation. We will
call this evaluation functiondistance evaluation function
3D (DEF3D).

For our experiments we have developed a fourth eval-
uation function: thepath following evaluation function
(PFEF). It takes the projected position(x′, y′) of the
robot after∆t′ seconds given trajectory(vo, ωo) and as-
signs−∞ to the trajectory if the closest point on the
shortest path to the goal is more than maxdevcm (in the
experiments maxdev = 50.0) away from (x′, y′) and
DEF2D(vo, ωo) in any other case. This evaluation func-
tion simulates the computation of robot control com-
mands from a planned path to the goal.



Figure 3: The Pioneer II platform

5 Experimental Results

In this section we describe the experiments we have car-
ried out in order to compare the performance of the four
evaluation functions introduced in the previous section
and discuss the results.

The experiments have been carried out using a Pioneer II
platform equipped with a laser range finder as shown in
Figure 3. In the first experiment the robot repeatedly ex-
ecuted planned paths between four goal positions which
are depicted in Figure 4. Here, the path planner randomly
generates intermediate goal points for the collision avoid-
ance which are between 1m and 5m ahead on the planned
path. Note, that this is a quite challenging setup to test
a collision avoidance algorithm as the goal points tend
to be quite far away. Using the evaluation function de-
scribed in [3] in this setup, we experienced a lot of situ-
ations where the robot could not reach the target point at
all. We draw the distance to the next target point on the
path randomly to ensure that the robot faces a lot of dif-
ferent situations. Please also note that we performed our
experiments in a populated university office where hu-
mans cross the robot’s way occasionally. The sampling of
target points introduces a lot of variance in the robot’s be-
havior. Therefore each course of the experiment consist-
ing of the four navigation tasks shown in Figure 4 was re-
peated 12 times. Figure 5 shows the average time it took
the collision avoidance system to complete the course us-
ing the four evaluation functions together with the 95%
confidence interval of the mean.

As we can see from Figure 5, DCEF is significantly better
than all other evaluation functions. For example it is 15%
better than DEF2D, the second best evaluation function.
DEF2D and DEF3D do not differ significantly in the ex-
periment. PFEF is by far the worst evaluation function
and significantly worse than the other three functions.

It is not surprising that the robot performs better using
DCEF than using DEF2D alone as DCEF takes the side
clearance of the robot as well as the progress towards the

Figure 4: The experimental setup.

Figure 5: The time it took the collision avoidance mod-
ule to complete a sequence of four navigation tasks using
different evaluation functions. the mean.

target into account. In a second experiment, we drove the
robot up and down the corridor of our department build-
ing with a speed of up to 100 cm/s where the corridor is
blocked by two unknown obstacles. In Figure 6 you can
see typical traces produced by these two evaluation func-
tions during this experiment. As illustrated in the figure,
DEF2D tends to come closer to obstacles and then has to
reduce its velocity. In the figure the robot’s current veloc-
ity is indicated by the width of the light grey background
of the robot’s trajectory. In additional simulator experi-
ments using the same setting, DCEF on average required
11.4% less time for completing a sequence of four navi-
gation tasks than DEF.

Surprisingly, it turned out that DEF3D is not significantly
better and in fact even slightly worse than DEF2D. How-
ever, this can be explained by the very coarse model used,
and in addition, the evaluation of this function takes more
than 1 second per iteration using our current implemen-
tation rather than about 0.25 seconds with DEF. As the
robot adapts to these long update times, it is in general
still possible to navigate reliably, but the robot drives
more carefully. However, for high speed navigation in
the hallway the update interval for DEF3D is much too
large and results in unreliable navigation behavior. Here
DEF2D clearly outperforms DEF3D, though not for prin-



Figure 6: Paths produced by DEF2D and DCEF.

cipal reasons but due to the speed limitations of our com-
puters.

PFEF performs significantly worse than the other evalua-
tion functions. This is caused by the type of map used for
planning. We use a local map of the robot’s environment
that is built from one sensor reading only. Due to occlu-
sion, the map can change considerably during a short time
period leading to a new shortest path which differs dras-
tically from the previous one. This can lead to unstable
navigation behavior when using PFEF. Figure 7 demon-
strates this effect. After a small rotation of the robot the
shortest path to the target point has changed completely.

Conclusion

In this paper we have presented an approach to collision
avoidance for mobile robots that uses local path planning
within a map built from the robot’s latest range mea-
surements followed by a search for control commands
to steer the robot towards the goal safely and efficiently.
While the search for control commands allows to take
the robot’s dynamics into account and therefore allows
for very smooth navigation behavior, planning is able to
determine the optimal path towards the goal and mini-
mizes the likelihood that the robot gets trapped in dead
end situations. In extensive experiments we have com-
pared four approaches to utilize the results of path plan-
ning in the search for good control commands and show
that thedistance- and clearance based evaluation func-
tion is significantly better than the other three evaluation
functions, especially as the one that models a path fol-
lowing behavior.
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Figure 7: The instability of paths.
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