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Abstract

Estimating the location of people using a network
of sensors placed throughout an environment is a
fundamental challenge in smart environments and
ubiquitous computing. Id-sensors such as infrared
badges provide explicit object identity information
but coarse location information while anonymous
sensors such as laser range-finders provide accurate
location information only. Tracking using both sen-
sor types simultaneously is an open research chal-
lenge. We present a novel approach to tracking mul-
tiple objects that combines the accuracy benefits of
anonymous sensors and the identification certainty
of id-sensors. Rao-Blackwellised particle filters are
used to estimate object locations. Each particle rep-
resents the association history between Kalman fil-
tered object tracks and observations. After using
only anonymous sensors until id estimates are cer-
tain enough, id assignments are sampled as well re-
sulting in a fully Rao-Blackwellised patrticle filter
over both object tracks and id assignments. Our ap-
proach was implemented and tested successfully us-
ing data collected in an indoor environment.

Introduction

with relatively coarse location informatidhvantet al., 1992;
Priyanthaet al, 2004. Various techniques have been pro-
posed for tracking with multiple anonymous sensors or multi-
ple id-sensors, but the problem of integrating anonymous and
id sensor information has not been addressed so far. In this
paper we present an approach that combines the accuracy ben-
efits of anonymous sensors with the identification certainty of
id-sensors.

Our approach uses Rao-Blackwellised particle filters to ef-
ficiently estimate the locations and identities of multiple ob-
jects. Each particle represents a history of associations be-
tween object tracks and observations. For each patrticle, the
individual objects are tracked using Kalman filters. Since
the initial id uncertainty makes a sample-based representation
of id assignments extremely inefficient, our approach starts
by tracking objects using only anonymous sensors and ef-
ficiently representing estimates over object id's by keeping
track of sufficient statistics. Once the id estimates are cer-
tain enough, the approach switches to sampling id assignments
as well resulting in a fully Rao-Blackwellised particle filter
over both object tracks and id assignments. When applied to
anonymous sensors only, our method results in a new Rao-
Blackwellised approach to multi-hypothesis tracking, which
has gained substantial attention in the target tracking commu-
nity [Bar-Shalom and Li, 1995

This paper is organized as follows: Section 2 clarifies the

e|aroblem. Section 3 then presents our Rao-Blackwellised par-

throughout an environment is a fundamental problem relevantiCle filter approach.to trackjng multiple _objects using only
to several research communities. Knowing the locations oftnonymous sensor information and Section 4 extends the ap-

people is of critical importance for research investigating highproaCh to incorporate id-sensors. Our implementation and ex-

level state estimation, plan recognition, and learning ofhumau‘?.e”mental results are presented in Section 5, followed by a

activity patterns for applications such as work flow enhance-d'scuss'on'

ment and health monitoring. s
Over the years, many location estimation approaches hav% Problem Description
been introduced using sensors such as cameras, laser rang@ure 1 illustrates the problem of tracking multiple people
finders, infrared and ultrasound sensors, and wireless netvith anonymous and id-sensors. The solid and dotted lines
working infrastructurHightower and Borriello, 2001 A  are the trajectories of persoh and B, respectively. In the
crucial aspect of these sensors is whether they provide edeginning, the identity of the two people is not known. As
plicit information about the identity of a personAnony- they walk, the anonymous sensor observes their locations fre-
mous sensorsuch as radar, reflective ultrasound transducersjuently. Since the people are far enough apart, their positions
and scanning laser range-finders provide accurate location amdn be tracked reliably using the anonymous sensor. How-
appearance information, but do not provide explicit identityever, until they reach id-sensor areas 3 and 4, both trajectories
information. ld-sensorslike infrared and ultrasound badge have the same probability of belonging to either personB.
systems do provide explicit object identity information, but Hence there are two different hypotheses for the id’s of the two
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Figure 1:Example scenario: The shaded circles indicate areas cov-
ered by id-sensors such as infrared receivers. When a person wearing
a badge enters such an area, the corresponding sensor issues a read-
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ing indicating the id of the person. Since these sensors provide nBigure 2: Graphical model for multi-object tracking with anony-
information about the person’s location within the area, two peoplemous and id-sensors:;, is the state vector describing the locations
in the same area can not be distinguished. Not shown is an additionaf the individual objects at timg. Objects generate anonymous ob-
anonymous sensor such as a laser range-finder. This sensor providgsgvations?;, and id observations,. The assignments of individual
accurate information at a high rate about the locations of people, busbservations to objects are given by the hidden négemddy,. Rao-

no information about their id’s. Blackwellised particle filtersampleassignments;. andd;, and solve

. ) . . the state updates analytically, using Kalman filters conditioned on the
trajectories. After passing through the coverage of id-sensorggmples.

3 and 4, the ambiguity is resolved and both trajectories’ id’s

are determined. Then, after the paths cross there is confusian and the complete sequence of observations up to kinse
about the continuation of the two tracks. When the peopl@iven byz;.; (we use fat and tlde to distinguisranonymous
leave the light gray area the anonymous sensor can not detdrom id observations). The associations between object tracks
mine which observations to associate with which trajectorya;;'c and observations are given by assignment matdgesnd

This problem is known as thdata associatiogproblem in the 05 For instancedy (i, j) is one iff;, assigns anonymous ob-

multitarget tracking communityBar-Shalom and Li, 1945 fervationéi, to objectz?, and zero otherwise. The observa-
|

Were there no id-sensors, it would be impossible to resolv ons onlv depend on the current obiect positions and assian-
this ambiguity. In our scenario, the ambiguity can be resolve nts y dep Jectp 9

as soon as the people reach the areas covered by id-sensord’ Lo . .
and 6. To do so, however, it is necessary to maintain the hy- ?The goal of tracking is to estimate the posterior over the

. - . - statex;, based on all sensor information available up to time
gthBe Z?)?nfg;)[;gog:Bpgsisr:glg ;\rNarc]: Eﬁg{ggil:%ﬂg@pﬂgomg down k. Afactored representation of this tracking problem allows us

L . to use Rao-Blackwellised particle filters (RBPF) which sample
The use of a combination of anonymous and id-sensors r P ( ) P

; o &ssignments and track the objects using a bank ¢falman
quires us to solve two types of data association problems;yiers for each sampléDoucetet al, 2004. However, due
The first problem is the classic multitarget tracking problemyq o large number of anonymous assignments and the “flat”

of assigning anonymous observations to object tracks. Thigjstributions over id assignments, a straightforward implemen-
data association problem has to be solved at each point

X N . o fation of RBPFs would require a prohibitive number of sam-
time, resulting inn!* possible associations for tracks of length

) X v ples. In the next section we describe how to efficiently sample
k involving m people. Fortunately, the probability distribu- 5h0nymous assignments over time. The resulting algorithm,

tions over these anonymous assignments are typically highly,t"repF (multi-hypothesis tracking RBPF), can track mul-
peaked, thereby allowing an efficient, sample-based represefis e gpjects using anonymous sensor information. Then, in

tation of assignments. The second problem is the one of e tion Section 4, we will describe how to extend MHT-RBPF
timating the id of individual objects/tracks. As with anony- incorporate id-sensors.

mous assignments there ang possible assignments of id’s to
tracks. Fortunately, the number of id assignments does not i . : .
crease over time since the identity of objects does not changg. MHT'RBPF' R_aO'BlaCkW_elhsed Pamde
However, due to the low spatial resolution of id-sensors, the  Filters for Multi-hypothesis Tracking

posterior over id assignments is almost uniform during earlySince the assignments between observations and ob-
stages of the estimation process (see Figure 1). For such “flajects/tracks are not given, we need to estimate the posterior
distributions, a sample-based representation requires in the Qfva poth object states;, and assignmentd,.. This joint
der of m! samples, which is certainly not feasible for online posterior can be factorized by conditioning the stat®n the

tracking. assignmenté;. ;.
Figure 2 shows the graphical model for this tracking prob- g b

!em. Here, time is indexeld b%/ subscripts and the current time p(xk,ém | 21) = plas | ém,ihk) p(ém | Z12). (1)

is denoted byk. =y, = {z;,x3,..., 2]’} are the current po- _ _ o _

sitions of them people being tracked. Following standard no- ~ The key idea of Rao-Blackwellised particle filters is to com-
tation in the tracking community, observations are denoted byute (1) bysamplingassignments from(6, ., | Z21.) and then



computing the state; conditioned on each sample. More This approach has two main sources of inefficiency. First,
specifically, each sample represents a history of data assodhe samples of the previous sample set are drawn without con-
ations él:k- and is annotated with a bank af Kalman fil- sidering the most recent observatiggn The second source of
ters, one for each tracked person. The Kalman filters aréefficiency is that sampling from the predictive distribution in
conditioned on the data associations provided by the sampl&e second sampling step can be very inefficient if the obser-
and thus can be updated efficiently using standard Kalmawmation likelihoodp(2 | 6k, tx—1) is highly peaked compared
filter update rules for known data associati@ar-Shalom g the predictive distributiom(ék | t—1) [Pitt and Shephard,

and Li, 1993. The Kalman filter estimates, or tracks, =  1999. The second problem is extremely severe in our con-
{t1y., ¥ )i=1,....m @re represented by the mean and covariancext since the predictive distribution for assignments is virtu-
of the persons’ locations. ally uniform while the posterior is typically concentrated on a

RBPF generate assignments incrementally by maintainingmall set of assignmeniBar-Shalom and Li, 1995
sample sets containing assignment histories distributed ac-

cording to the posterior given by the rightmost term in (1). MCMC Sampling from the optimal distribution
More specifically, at time: a sample sef; — {51(:)7“}18) | Let us first discuss how to address the second probigm,

1 <. < N} containsN weighted samples, where each sam-the problem of drawing samples from the posterior distribu-
o ) tion (4), giventhe previous sample set. Conditioned on a spe-

() G - ; :
ples;”’ = (t;”,0;.,) consists of a history of assignments and _... ; A(0) . . .
the ckUrrent ’Bositlign estimates for the objects. The generic cific assignment; ;,_,, the optimal sampling distribution fol-
lows from (4) as

RBPF algorithm generates a sgt from the previous sample a0 20
setS,_; and an observatiofy, by first generating new assign- (109 2) = P[0k, t,21) POk | £321) 5)
ments6,, distributed according to the posteriptd;., | ). ko P [ 1)

Each such assignment specifies which observations tre- is possible to efficiently generate samples proportional to (5)

. a - . .t
long to which object track. The final step consists of updatmgt ; ) ; .
the Kalman filter tracks of each sample using the observation sing Markov Chain Monte Carlo (MCMC) techniquigilks

; et al, 199d. We apply a version of the Metropolis-Hastings
assigned to them by the samjpfeoucetet al, 2000. algorithm that has been adapted specifically to the data as-

3.1 Importance Sampling with Lookahead sociation probleniDellaertet al, 2003. In a nutshell, the
The efficiency of RBPFs strongly depends on the number ofd€2 Of Metropolis-Hastings is to sample states from an er-

| h . ) godic Markov chain with the posterior as stationary distribu-
sampies needed 1o represent t _e_posterﬂéffk | Zi6)- In fion. Such a Markov chain is constructed by choosing a candi-
this section we will devise an efficient algorithm for generat-

. X ; date for the next staté given the current stateaccording to a
ing such assignments/samples. Due to the sequential nat

R Foposal distribution (s | s). This state transition is accepted
of the estimation process, samples must be generated from the., probability

assignments of the previous time step. The posterior atkime , ,
is given by a(s,s") = min (1, m(s)a(s | ) )) : (6)
p(0rk | 518 m(s)a(s" | s)
where 7(s) is the intended stationary distribution. In our
case the states are the possible assignmintnd =(s) is
Y 5 14 5 the optimal sampling distribution (5). The efficiency of the
_ PCel Ok, 21— 1)k \91%71,21;&71)1)(91%1|21:k71)(3) Metroppolis-Hastiﬁgsgmethod stron(gl)y depends on t%/e choice

_ pCGr |01k, 216 1)P(01:8 | Z16—1) @

PG | Orr—1, 215-1)

A P2 | 91:’1—1’21:’“—1) of the proposal distributiog. We use an efficient approach
P | O, te—1) p(Ok | ti—1) @ 2 ) @ called smart chain flipping. Smart chain flipping permutes
- PGk | teo1) DAL=t | Zlik—1)- the assignments of a subset of the objects on each transition,

Ofp(91~k\21-k_1) byp(ék | frrt 21~k_1)p(91-k_1 ) ment likelihoods into account. This approach has been shown
respectively. (4) follows from (3) by the fact that the position rE’ESDUIh In |mpr?v§80r£|fx|n% rat_les on assignment problems
trackst;_1 of the objects are sufficient statistics for the previ- (seelDellaertet al, or details).

ous observation$;.,_; and assignmenl%:k_l. Assignment lookahead

Unfortunately, in most cases it is impossible to sample di-So far, the samples generated in each Markov chain are dis-
rectly from (4). The approach most commonly used in particleributedproportionalto the target distribution (5). To generate
filters is to evaluate (4) from right to left in a three stage pro-samples from the desired posterior, we still have to weight all

cess[Doucetet al,, 2001: First, draw samples,(j) from the  samples in the Markov chain generated from a samﬁﬂq
previous sample set using the importance weights, then dra : N0 ;
for each such sample a new sample from the predictive distrifw(rgport'On‘"1| top(Z, | t;2,). Since all samples generated from

. A (v) . : _ 5,2, will get the same importance weight, we can improve the
butionp(0 | #;.%,), and finally weight these samples propor efficiency of the sampler by incorporating this importance fac-

tional to the observation likelihoga Z;, | é;"),t,(ﬁf‘ll). The last ; : (+) i (O
step, importance sampling, adjusts for the fact that samples aFgr into the weightv,-, of the previoussamples,

not drawn from the actual target distribution. oM o w pG | 1)), @)



1. Inputs: Sk_1 = {<5/(:l1vw/(£1> | =1,..., N}, observatiorg,

2. Sp:=10 Il Initialize

3. forv:=1,...,N do /I Generate lookahead assignments using most recent observation

4 Generatel/ sampled)\"™ proportional top( | 0™, ¢\ ) p(0™ | ) ) using MCMC

5. forv.:=1,...,N do /I Update importance weights based on average probability of lookahead assignnents
w<L) Ale,m L A(e,m L

6 wl(clzl & ]}xf_l m:1,,,Mp(Zk | gl(c’ )7t§czl) p(ol(c’ ) | tgcll)

7. forv:=1,...,N do I Samplesgjz1 using updated weights and draw{” from corresponding set

8. Samples,(jl1 = (tﬁjﬁl, éﬁ,)ﬁl) from S}, with probability proportional to the updated importance Weiﬁgﬁl.

9 Draw an assignmeﬁfj) from the corresponding Markov chain generated in step 4.

10.  Update the position estimate$’ using Kalman filter updates with;, ¢\, andd"”

1 s =000 Se=Su{(s, %))

12. return S

Table 1: MHT-RBPF algorithm.

That is, the importance weight of the previous sample is up-4 Tracking with Anonymous and ID-Sensors

dated by the ability of the tracks associated with the samplén principle, MHT-RBPF’s can be readily extended to include
to predictthe next observation. Accurate computation of theid-sensors. Instead of only sampling anonymous assignments,
right term in (7) requires summation over all possible next asit is possible to sample both anonymous and id assignments.
signments@k, as done byMorales-Me&ndezet al, 2004. Such a straightforward extension, however, results in an infea-
Since in our case the number of assignments can be pr&ible increase in the number of samples needed during early
hibitively large, we estimate (7) using the samples generateg§tages of the estimation process. This has two reasons. First,
in the MCMC step. Unfortunately, computings;, | ¢ ,)is ~ €ach hypothesis (sample) of MHT-RBPF haspossible as-
equivalent to computing the normalization factor of a MarkoySIgnments of id’s to object tracks. Second, due to the low spa-
chain, which is not possible in genefilks et al, 1994. tial resolution of id-sensors, the posterior over id assignments
In our case, however, we do not need the absolute value df Initially very uncertain and sample-based representations of
the normalization constant for each chain, but only the valugUch flat distributions are inherently inefficient. To overcome
relative to the normalizers of the other Markov chains. Sincetn€Se difficulties we instead use a two-stage estimation pro-
the distributions (5) have similar shapes for all chains (they’€SS- During the initial stage, only anonymous sensors are

are highly peaked), we can estimate the relative normalizatioHS€d for object tracking while the id-sensors are simply used to

constants by the average probabilities of the samples in thgSimate the identity of the different objects. Once these esti-
different Markov chains mates are certain enough, the process moves into the full Rao-

e Blackwellisation phase, during which both anonymous and id
More speIC|f|caI13(/L, nll)etM samples be drawn from each assignments are sampled. The two phases are discussed below.
Markov chain. Le®,”"" denote then-th sample drawn from _ o
Identity estimation phase

the Markov chain associated with sampLé 1~ Then the up- , .
W i o During this phase only anonymous sensors are used to track
dated weightv; ~ , of this sample is given by the objects. The id-sensors are used to estimate the identity
w® R R of the different objects. More specifically, for each hypothesis
0 o =N pg 6™ HY ) p(@™ [47,),  (8)  of the MHT-RBPF, there aren! possible assignments, of
m=1...M identities to tracks. In order to avoid estimating distributions
where proportionality is such that all weights sum up to one. OVer this potentially too large number of assignments, we only
keep track of sufficient statistics that allow us to recover distri-
MHT-RBPF Algorithm butions over assignments. Such sufficient statistics are given

The algorithm is summarized in Table 1. In step 4, new sampiy them? individual assignment8, (i, j) of id's j to tracks
ples are generated from the previous sample set. The avep.  1Nn€ probabilities of these individual assignments can be
age probability of these samples is used to estimate the look&Pdated recursively using the most recent id observation:
head/predictive weights of each sample of the previous set . . . o

(step 6). This step also involves a normalization so that th@(0r (@, 3) [0k, 21:) o< p(Zg [8) P(Or—1(3,5) |Ori—1, Z1:0-1)  (9)
weights sum up to one. In step 8, a sample is drawn from the _

previous sample sef;,_,. Then, for each sample drawn from Here, z] is an id observation corresponding to pergonTo
S, 1, we draw an assignmeéi” from the posterior re-using determine the assign.merjt probabilit!es, we have to normalize
the samples generated in the Markov chains in step 4. Step 3€Se values by considering all possible assignments:
updates the actual position estimates for the individual objects, [ jyes 0 (G, 5) p(Ok (i, 7))

N Oy =0) = . , 10
using the corresponding assignméit. Pt =6) 2o i jyean 070:5) PO (4, 5)) o




Again, ¢'(i,j) is one if ' assigns idj to object tracki,
and zero otherwise. The computational complex computa-
tion of (10) can be avoided lsamplingid assignments using
Metropolis-Hastings, based on the individual valdg&, j).
This approach works identical to the method used to sample
anonymous assignments in the MHT-RBPF algorithm. 1
To summarize, in the identity estimation phase, each sam- —F
ple s*) consists ofn Kalman filters and am: x m matrix 6, :
representing the sufficient statistiég(¢, j) of the id assign- »
ments. Whenever needed, the posterior over id assignments ot
can be computed using MCMC sampling. The id estimation
stage is ended as soon as the posterior over id assignments
is sufficiently peaked to allow an accurate representation with 4
a reasonable number of samples. Currently, we estimate th
condition by determining the average number of hypotheses i
the Markov chains run for id assignments.

B Laser range-finder
O Uuitra sound receiver -
= IR receiver

Elgure 3: Outline of the Intel Research Lab Seattle. The environ-
ment is equipped with ceiling mounted ultrasound and infrared re-
ceivers. Cubical partitions are half-height (about 1.3 meters high).
Full Rao-Blackwellisation phase The two laser range-finders scan at chest height just above the parti-
Once the id’s are estimated accurately enough, we begin egons. Also shown are the paths of the six people as estimated by our
timating the joint posterior of both anonymous and id assign-system.

ments. This posterior is given by;

011,01k | 21k, 21 2| Ory tio—1 )P (G | O, 1) - . o
P( Ok, O | 21k, Z1:6) o< P2 O ti—1)P (3 |00, B11) sample set contained at least one hypothesis with correct loca-

POk | tk—1)P(Ok |Ok—1,tk—1)p(Or1:k—1, 011 | 21k, Z1k). (11)  tions and identities. Each method was tested on 10 trial runs
Note that id assignments are sampled only once during thgsing the real data set. Without identity estimation phase, the
complete estimation process, since after an id assignment #90rithm was never able to successfully complete the data
sampled, the identities of the attached object tracks are fixe@€l: Next, we tested the approach when not switching to the
From then on, id observations serve two purposes: First thelp!ll Rao-Blackwellisation phaseg. the algorithm remained in
provide information of object positions, and, second, they!n® identity estimation phase. Without lookahead, the update
provide information for weighting anonymous hypotheses,t'mes of the approach were prohibitively large (more than 10

thereby improving the object estimates considerably. timesrealtime). The Iookah_ead res_,ulted in significant speedup
and the results are shown in the first row of the table below.
5 Experiments Finally, we tested our two-phase approach with and without

i ) lookahead. The algorithms were able to successfully track the
To validate our approach we captured trace logs of six peogomplete data in most cases, as can be seen in the first col-

ple simultaneously walking around the cubical areas of thgmn The other three columns give average time, standard de-
office environment outlined in Figure 3. Each person was;jation, and maximum time per update in seconds. The results
wearing a small id-sensor track-pack consisting of two in-gemonstrate that both the lookahead and the two-stage process

frared badges and an ultrasound badge. Infrared and “'tr%prove the performance of the tracking algorithm.
sound receivers were installed throughout the ceiling. The

entire scene was continually observed by two wall-mountedMethod Succ.| Avg. | Std. | Max.
laser range-finders scanning at chest height just above the qUfg estimation w. Took. 10 | 0.062| 0.125| 2.9
bical partitions. The duration of the log was 10 minutes, dury Two-phase RBPF 10 | 0.154| 0.170! 1.5
ing which the individual people moved between 230 meter and Tyo-phase RBPF w. lookl 9 0.036| 0.060| 1.2

410 meter. In this challenging data log, the paths of people fr
quently crossed each other and there were situations in which |n another set of experiments, we compared our MCMC

up to 4 people were occluded by others. To validate our trackyased assignment generation to a deterministic sampling
ing algorithm quantitatively, we carried out a series of experscheme, as used in traditional MHT algorithms. Here, as-
iments based on this data log and on additional simulatiogjgnments are enumerated in decreasing order wrt. their like-

runs (seewww.cs.washington.edu/robotics/people- lihood [Cox and Hingorani, 1996 Note that generating as-
tracking/  for visualizations). signments by decreasing likelihood results in estimates that
Tracking ability are strongly biased towards more likely assignments. We per-

. formed extensive tests using real data and data simulating 20

e . ! \ Wikople and found that our approach is slightly more efficient
in Figure 3. This result was obtained with an MHT-RBPF us-,;q achieving the same robustness. Since such results de-

ing 1000 samples and Markov chains of length 100. With thig)on g 5 implementational details, we did not consider them
setting, the algorithm was able to reliably track the six peopl ignificant enough. However, the fact that smart chain flipping

Qorks at least as good as ranked assignments in practice is

ters, we carried out trial runs for different variants of our al-very encouraging, since the MCMC approach results in much
gorithm. A run was considered successful if at the end th?ess biased estimétes



1 —————————— problem by clustering people into groups for which we do not

0.9 coe attempt to estimate the individual id’s, as already introduced

o & j in a similar context byRosencrantet al, 2003. Finally, the

0.6 et e ] recovery from tracking failures is another important issue for

0.5 ’ ’ 1 future research. Especially in the full Rao-Blackwellisation

g:‘; phase, the current approach can not recover from losing the
correct id hypothesis, since id hypotheses do not change over

0.2 ’
0.1 » time.
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