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Abstract
Estimating the location of people using a network
of sensors placed throughout an environment is a
fundamental challenge in smart environments and
ubiquitous computing. Id-sensors such as infrared
badges provide explicit object identity information
but coarse location information while anonymous
sensors such as laser range-finders provide accurate
location information only. Tracking using both sen-
sor types simultaneously is an open research chal-
lenge. We present a novel approach to tracking mul-
tiple objects that combines the accuracy benefits of
anonymous sensors and the identification certainty
of id-sensors. Rao-Blackwellised particle filters are
used to estimate object locations. Each particle rep-
resents the association history between Kalman fil-
tered object tracks and observations. After using
only anonymous sensors until id estimates are cer-
tain enough, id assignments are sampled as well re-
sulting in a fully Rao-Blackwellised particle filter
over both object tracks and id assignments. Our ap-
proach was implemented and tested successfully us-
ing data collected in an indoor environment.

1 Introduction
Accurate and reliable tracking of people using sensors placed
throughout an environment is a fundamental problem relevant
to several research communities. Knowing the locations of
people is of critical importance for research investigating high-
level state estimation, plan recognition, and learning of human
activity patterns for applications such as work flow enhance-
ment and health monitoring.

Over the years, many location estimation approaches have
been introduced using sensors such as cameras, laser range-
finders, infrared and ultrasound sensors, and wireless net-
working infrastructure[Hightower and Borriello, 2001]. A
crucial aspect of these sensors is whether they provide ex-
plicit information about the identity of a person.Anony-
mous sensorssuch as radar, reflective ultrasound transducers,
and scanning laser range-finders provide accurate location and
appearance information, but do not provide explicit identity
information. Id-sensorslike infrared and ultrasound badge
systems do provide explicit object identity information, but

with relatively coarse location information[Wantet al., 1992;
Priyanthaet al., 2000]. Various techniques have been pro-
posed for tracking with multiple anonymous sensors or multi-
ple id-sensors, but the problem of integrating anonymous and
id sensor information has not been addressed so far. In this
paper we present an approach that combines the accuracy ben-
efits of anonymous sensors with the identification certainty of
id-sensors.

Our approach uses Rao-Blackwellised particle filters to ef-
ficiently estimate the locations and identities of multiple ob-
jects. Each particle represents a history of associations be-
tween object tracks and observations. For each particle, the
individual objects are tracked using Kalman filters. Since
the initial id uncertainty makes a sample-based representation
of id assignments extremely inefficient, our approach starts
by tracking objects using only anonymous sensors and ef-
ficiently representing estimates over object id’s by keeping
track of sufficient statistics. Once the id estimates are cer-
tain enough, the approach switches to sampling id assignments
as well resulting in a fully Rao-Blackwellised particle filter
over both object tracks and id assignments. When applied to
anonymous sensors only, our method results in a new Rao-
Blackwellised approach to multi-hypothesis tracking, which
has gained substantial attention in the target tracking commu-
nity [Bar-Shalom and Li, 1995].

This paper is organized as follows: Section 2 clarifies the
problem. Section 3 then presents our Rao-Blackwellised par-
ticle filter approach to tracking multiple objects using only
anonymous sensor information and Section 4 extends the ap-
proach to incorporate id-sensors. Our implementation and ex-
perimental results are presented in Section 5, followed by a
discussion.

2 Problem Description
Figure 1 illustrates the problem of tracking multiple people
with anonymous and id-sensors. The solid and dotted lines
are the trajectories of personA and B, respectively. In the
beginning, the identity of the two people is not known. As
they walk, the anonymous sensor observes their locations fre-
quently. Since the people are far enough apart, their positions
can be tracked reliably using the anonymous sensor. How-
ever, until they reach id-sensor areas 3 and 4, both trajectories
have the same probability of belonging to either personA or B.
Hence there are two different hypotheses for the id’s of the two
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Figure 1:Example scenario: The shaded circles indicate areas cov-
ered by id-sensors such as infrared receivers. When a person wearing
a badge enters such an area, the corresponding sensor issues a read-
ing indicating the id of the person. Since these sensors provide no
information about the person’s location within the area, two people
in the same area can not be distinguished. Not shown is an additional
anonymous sensor such as a laser range-finder. This sensor provides
accurate information at a high rate about the locations of people, but
no information about their id’s.

trajectories. After passing through the coverage of id-sensors
3 and 4, the ambiguity is resolved and both trajectories’ id’s
are determined. Then, after the paths cross there is confusion
about the continuation of the two tracks. When the people
leave the light gray area the anonymous sensor can not deter-
mine which observations to associate with which trajectory.
This problem is known as thedata associationproblem in the
multitarget tracking community[Bar-Shalom and Li, 1995].
Were there no id-sensors, it would be impossible to resolve
this ambiguity. In our scenario, the ambiguity can be resolved
as soon as the people reach the areas covered by id-sensors 5
and 6. To do so, however, it is necessary to maintain the hy-
potheses for both possible track continuations,A going down
andB going up, orB going down andA going up.

The use of a combination of anonymous and id-sensors re-
quires us to solve two types of data association problems.
The first problem is the classic multitarget tracking problem
of assigning anonymous observations to object tracks. This
data association problem has to be solved at each point in
time, resulting inm!k possible associations for tracks of length
k involving m people. Fortunately, the probability distribu-
tions over these anonymous assignments are typically highly
peaked, thereby allowing an efficient, sample-based represen-
tation of assignments. The second problem is the one of es-
timating the id of individual objects/tracks. As with anony-
mous assignments there arem! possible assignments of id’s to
tracks. Fortunately, the number of id assignments does not in-
crease over time since the identity of objects does not change.
However, due to the low spatial resolution of id-sensors, the
posterior over id assignments is almost uniform during early
stages of the estimation process (see Figure 1). For such “flat”
distributions, a sample-based representation requires in the or-
der of m! samples, which is certainly not feasible for online
tracking.

Figure 2 shows the graphical model for this tracking prob-
lem. Here, time is indexed by subscripts and the current time
is denoted byk. xk := {x1

k, x2
k, . . . , xm

k } are the current po-
sitions of them people being tracked. Following standard no-
tation in the tracking community, observations are denoted by
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Figure 2: Graphical model for multi-object tracking with anony-
mous and id-sensors.xk is the state vector describing the locations
of the individual objects at timek. Objects generate anonymous ob-
servationŝzk and id observations̃zk. The assignments of individual
observations to objects are given by the hidden nodesθ̂k andθ̃k. Rao-
Blackwellised particle filterssampleassignmentŝθk andθ̃k and solve
the state updates analytically, using Kalman filters conditioned on the
samples.

zk and the complete sequence of observations up to timek is
given byz1:k (we use hat and tilde to distinguishanonymous
from id observations). The associations between object tracks
xi

k and observations are given by assignment matricesθ̂k and
θ̃k. For instance,̂θk(i, j) is one if θ̂k assigns anonymous ob-
servationẑj

k to objectxi
k, and zero otherwise. The observa-

tions only depend on the current object positions and assign-
ments.

The goal of tracking is to estimate the posterior over the
statexk based on all sensor information available up to time
k. A factored representation of this tracking problem allows us
to use Rao-Blackwellised particle filters (RBPF) which sample
assignments and track the objects using a bank ofm Kalman
filters for each sample[Doucetet al., 2000]. However, due
to the large number of anonymous assignments and the “flat”
distributions over id assignments, a straightforward implemen-
tation of RBPFs would require a prohibitive number of sam-
ples. In the next section we describe how to efficiently sample
anonymous assignments over time. The resulting algorithm,
MHT-RBPF (multi-hypothesis tracking RBPF), can track mul-
tiple objects using anonymous sensor information. Then, in
section Section 4, we will describe how to extend MHT-RBPF
to incorporate id-sensors.

3 MHT-RBPF: Rao-Blackwellised Particle
Filters for Multi-hypothesis Tracking

Since the assignments between observations and ob-
jects/tracks are not given, we need to estimate the posterior
over both object statesxk and assignmentŝθ1:k. This joint
posterior can be factorized by conditioning the statexk on the
assignmentŝθ1:k:

p(xk, θ̂1:k | ẑ1:k) = p(xk | θ̂1:k, ẑ1:k) p(θ̂1:k | ẑ1:k). (1)

The key idea of Rao-Blackwellised particle filters is to com-
pute (1) bysamplingassignments fromp(θ̂1:k | ẑ1:k) and then



computing the statexk conditioned on each sample. More
specifically, each sample represents a history of data associ-
ations θ̂1:k and is annotated with a bank ofm Kalman fil-
ters, one for each tracked person. The Kalman filters are
conditioned on the data associations provided by the sample
and thus can be updated efficiently using standard Kalman
filter update rules for known data association[Bar-Shalom
and Li, 1995]. The Kalman filter estimates, or tracks,tk =
〈µi

k,Σi
k〉i=1,...,m are represented by the mean and covariance

of the persons’ locations.
RBPF generate assignments incrementally by maintaining

sample sets containing assignment histories distributed ac-
cording to the posterior given by the rightmost term in (1).
More specifically, at timek a sample setSk = {s(ι)

k , w
(ι)
k |

1 ≤ ι ≤ N} containsN weighted samples, where each sam-
ple s

(ι)
k = 〈t(ι)k , θ̂

(ι)
1:k〉 consists of a history of assignments and

the current position estimates for them objects. The generic
RBPF algorithm generates a setSk from the previous sample
setSk−1 and an observation̂zk by first generating new assign-
mentsθ̂k distributed according to the posteriorp(θ̂1:k | ẑk).
Each such assignment specifies which observations inẑk be-
long to which object track. The final step consists of updating
the Kalman filter tracks of each sample using the observations
assigned to them by the sample[Doucetet al., 2000].

3.1 Importance Sampling with Lookahead
The efficiency of RBPFs strongly depends on the number of
samples needed to represent the posteriorp(θ̂1:k | ẑ1:k). In
this section we will devise an efficient algorithm for generat-
ing such assignments/samples. Due to the sequential nature
of the estimation process, samples must be generated from the
assignments of the previous time step. The posterior at timek
is given by

p( θ̂1:k | ẑ1:k)

=
p(ẑk | θ̂1:k, ẑ1:k−1)p(θ̂1:k | ẑ1:k−1)

p(ẑk | θ̂1:k−1, ẑ1:k−1)
(2)

=
p(ẑk | θ̂1:k, ẑ1:k−1)p(θ̂k | θ̂1:k−1, ẑ1:k−1)

p(ẑk | θ̂1:k−1, ẑ1:k−1)
p(θ̂1:k−1 | ẑ1:k−1)(3)

=
p(ẑk | θ̂k, tk−1) p(θ̂k | tk−1)

p(ẑk | tk−1)
p(θ̂1:k−1 | ẑ1:k−1). (4)

Here, (2) and (3) follow from Bayes rule and the replacement
of p(θ̂1:k | ẑ1:k−1) by p(θ̂k | θ̂1:k−1, ẑ1:k−1)p(θ̂1:k−1 | ẑ1:k−1),
respectively. (4) follows from (3) by the fact that the position
trackstk−1 of the objects are sufficient statistics for the previ-
ous observationŝz1:k−1 and assignmentŝθ1:k−1.

Unfortunately, in most cases it is impossible to sample di-
rectly from (4). The approach most commonly used in particle
filters is to evaluate (4) from right to left in a three stage pro-
cess[Doucetet al., 2001]: First, draw sampless(ι)

k from the
previous sample set using the importance weights, then draw
for each such sample a new sample from the predictive distri-
butionp(θ̂k | t

(ι)
k−1), and finally weight these samples propor-

tional to the observation likelihoodp(ẑk | θ̂
(ι)
k , t

(ι)
k−1). The last

step, importance sampling, adjusts for the fact that samples are
not drawn from the actual target distribution.

This approach has two main sources of inefficiency. First,
the samples of the previous sample set are drawn without con-
sidering the most recent observationẑk. The second source of
inefficiency is that sampling from the predictive distribution in
the second sampling step can be very inefficient if the obser-
vation likelihoodp(ẑk | θ̂k, tk−1) is highly peaked compared
to the predictive distributionp(θ̂k | tk−1) [Pitt and Shephard,
1999]. The second problem is extremely severe in our con-
text since the predictive distribution for assignments is virtu-
ally uniform while the posterior is typically concentrated on a
small set of assignments[Bar-Shalom and Li, 1995].

MCMC Sampling from the optimal distribution
Let us first discuss how to address the second problem,i.e.
the problem of drawing samples from the posterior distribu-
tion (4),giventhe previous sample set. Conditioned on a spe-
cific assignment̂θ(ι)

1:k−1, the optimal sampling distribution fol-
lows from (4) as

p(θ̂k | θ̂(ι)
1:k−1, ẑ1:k) =

p(ẑk | θ̂k, t
(ι)
k−1) p(θ̂k | t

(ι)
k−1)

p(ẑk | t
(ι)
k−1)

(5)

It is possible to efficiently generate samples proportional to (5)
using Markov Chain Monte Carlo (MCMC) techniques[Gilks
et al., 1996]. We apply a version of the Metropolis-Hastings
algorithm that has been adapted specifically to the data as-
sociation problem[Dellaert et al., 2003]. In a nutshell, the
idea of Metropolis-Hastings is to sample states from an er-
godic Markov chain with the posterior as stationary distribu-
tion. Such a Markov chain is constructed by choosing a candi-
date for the next states′ given the current states according to a
proposal distributionq(s′ | s). This state transition is accepted
with probability

α(s, s′) = min

(
1,

π(s′)q(s | s′)
π(s)q(s′ | s)

)
, (6)

where π(s) is the intended stationary distribution. In our
case the states are the possible assignmentsθ̂k and π(s) is
the optimal sampling distribution (5). The efficiency of the
Metropolis-Hastings method strongly depends on the choice
of the proposal distributionq. We use an efficient approach
called smart chain flipping. Smart chain flipping permutes
the assignments of a subset of the objects on each transition,
where the actual choice already takes the individual assign-
ment likelihoods into account. This approach has been shown
to result in improved mixing rates on assignment problems
(see[Dellaertet al., 2003] for details).

Assignment lookahead
So far, the samples generated in each Markov chain are dis-
tributedproportionalto the target distribution (5). To generate
samples from the desired posterior, we still have to weight all
samples in the Markov chain generated from a samples

(ι)
k−1

proportional top(ẑk | t
(ι)
k−1). Since all samples generated from

s
(ι)
k−1 will get the same importance weight, we can improve the

efficiency of the sampler by incorporating this importance fac-
tor into the weightw(ι)

k−1 of theprevioussamples(ι)
k−1:

ŵ
(ι)
k−1 ∝ w

(ι)
k−1 p(ẑk | t

(ι)
k−1). (7)



1. Inputs: Sk−1 = {〈s(ι)
k−1, w

(ι)
k−1〉 | ι = 1, . . . , N}, observation̂zk

2. Sk := ∅ // Initialize
3. for ι := 1, . . . , N do // Generate lookahead assignments using most recent observation

4. GenerateM sampleŝθ(ι,m)
k proportional top(ẑk | θ̂

(ι,m)
k , t

(ι)
k−1) p(θ̂

(ι,m)
k | t

(ι)
k−1) using MCMC

5. for ι := 1, . . . , N do // Update importance weights based on average probability of lookahead assignments

6. ŵ
(ι)
k−1 ∝

w
(ι)
k−1
M

∑
m=1...M

p(ẑk | θ̂
(ι,m)
k , t

(ι)
k−1) p(θ̂

(ι,m)
k | t

(ι)
k−1)

7. for ι := 1, . . . , N do // Samples(ι)
k−1 using updated weights and draws(ι)

k from corresponding set

8. Samples(ι)
k−1 = 〈t(ι)k−1, θ̂

(ι)
1:k−1〉 from Sk−1 with probability proportional to the updated importance weightsŵ

(ι)
k−1.

9. Draw an assignment̂θ(ι)
k from the corresponding Markov chain generated in step 4.

10. Update the position estimatest
(ι)
k using Kalman filter updates witĥzk, t

(ι)
k , andθ̂

(ι)
k

11. s
(ι)
k := 〈t(ι)k , θ̂

(ι)
1:k〉; Sk := Sk ∪ {〈s(ι)

k , 1
N
〉}

12. return Sk

Table 1: MHT-RBPF algorithm.

That is, the importance weight of the previous sample is up-
dated by the ability of the tracks associated with the sample
to predict the next observation. Accurate computation of the
right term in (7) requires summation over all possible next as-
signmentsθ̂k, as done by[Morales-Meńendezet al., 2002].
Since in our case the number of assignments can be pro-
hibitively large, we estimate (7) using the samples generated
in the MCMC step. Unfortunately, computingp(ẑk | t

(ι)
k−1) is

equivalent to computing the normalization factor of a Markov
chain, which is not possible in general[Gilks et al., 1996].
In our case, however, we do not need the absolute value of
the normalization constant for each chain, but only the value
relative to the normalizers of the other Markov chains. Since
the distributions (5) have similar shapes for all chains (they
are highly peaked), we can estimate the relative normalization
constants by the average probabilities of the samples in the
different Markov chains.

More specifically, letM samples be drawn from each
Markov chain. Let̂θ(ι,m)

k denote them-th sample drawn from

the Markov chain associated with samples
(ι)
k−1. Then the up-

dated weight̂w(ι)
k−1 of this sample is given by

ŵ
(ι)
k−1 ∝

w
(ι)
k−1

M

∑
m=1...M

p(ẑk | θ̂(ι,m)
k , t

(ι)
k−1) p(θ̂

(ι,m)
k | t

(ι)
k−1), (8)

where proportionality is such that all weights sum up to one.

MHT-RBPF Algorithm
The algorithm is summarized in Table 1. In step 4, new sam-
ples are generated from the previous sample set. The aver-
age probability of these samples is used to estimate the looka-
head/predictive weights of each sample of the previous set
(step 6). This step also involves a normalization so that the
weights sum up to one. In step 8, a sample is drawn from the
previous sample setSk−1. Then, for each sample drawn from
Sk−1, we draw an assignmentθ̂

(ι)
k from the posterior re-using

the samples generated in the Markov chains in step 4. Step 10
updates the actual position estimates for the individual objects,
using the corresponding assignmentθ̂

(ι)
k .

4 Tracking with Anonymous and ID-Sensors
In principle, MHT-RBPF’s can be readily extended to include
id-sensors. Instead of only sampling anonymous assignments,
it is possible to sample both anonymous and id assignments.
Such a straightforward extension, however, results in an infea-
sible increase in the number of samples needed during early
stages of the estimation process. This has two reasons. First,
each hypothesis (sample) of MHT-RBPF hasm! possible as-
signments of id’s to object tracks. Second, due to the low spa-
tial resolution of id-sensors, the posterior over id assignments
is initially very uncertain and sample-based representations of
such flat distributions are inherently inefficient. To overcome
these difficulties we instead use a two-stage estimation pro-
cess. During the initial stage, only anonymous sensors are
used for object tracking while the id-sensors are simply used to
estimate the identity of the different objects. Once these esti-
mates are certain enough, the process moves into the full Rao-
Blackwellisation phase, during which both anonymous and id
assignments are sampled. The two phases are discussed below.

Identity estimation phase
During this phase only anonymous sensors are used to track
the objects. The id-sensors are used to estimate the identity
of the different objects. More specifically, for each hypothesis
of the MHT-RBPF, there arem! possible assignments̃θk of
identities to tracks. In order to avoid estimating distributions
over this potentially too large number of assignments, we only
keep track of sufficient statistics that allow us to recover distri-
butions over assignments. Such sufficient statistics are given
by them2 individual assignments̃θk(i, j) of id’s j to tracks
tik. The probabilities of these individual assignments can be
updated recursively using the most recent id observation:

p(θ̃k(i, j) | θ̂1:k, z1:k) ∝ p(z̃j
k | t

i
k) p(θ̃k−1(i, j) | θ̂1:k−1, z1:k−1) (9)

Here, z̃j
k is an id observation corresponding to personj. To

determine the assignment probabilities, we have to normalize
these values by considering all possible assignments:

p(θ̃k = θ̃′) =

∏
(i,j)∈θ̃′ θ̃′(i, j) p(θ̃k(i, j))∑

θ̃′′

∏
(i,j)∈θ̃′′ θ̃′′(i, j) p(θ̃k(i, j))

(10)



Again, θ̃′(i, j) is one if θ̃′ assigns idj to object tracki,
and zero otherwise. The computational complex computa-
tion of (10) can be avoided bysamplingid assignments using
Metropolis-Hastings, based on the individual valuesθ̃k(i, j).
This approach works identical to the method used to sample
anonymous assignments in the MHT-RBPF algorithm.

To summarize, in the identity estimation phase, each sam-
ple s(ι) consists ofm Kalman filters and anm × m matrix θ̃k

representing the sufficient statisticsθ̃k(i, j) of the id assign-
ments. Whenever needed, the posterior over id assignments
can be computed using MCMC sampling. The id estimation
stage is ended as soon as the posterior over id assignments
is sufficiently peaked to allow an accurate representation with
a reasonable number of samples. Currently, we estimate this
condition by determining the average number of hypotheses in
the Markov chains run for id assignments.

Full Rao-Blackwellisation phase
Once the id’s are estimated accurately enough, we begin es-
timating the joint posterior of both anonymous and id assign-
ments. This posterior is given by:

p( θ̂1:k, θ̃1:k | ẑ1:k, z̃1:k) ∝ p(ẑk | θ̂k, tk−1)p(z̃k | θ̃k, tk−1) ·
p(θ̂k | tk−1)p(θ̃k | θ̃k−1, tk−1)p(θ̂1:k−1, θ̃1:k−1 | ẑ1:k, z̃1:k). (11)

Note that id assignments are sampled only once during the
complete estimation process, since after an id assignment is
sampled, the identities of the attached object tracks are fixed.
From then on, id observations serve two purposes: First they
provide information of object positions, and, second, they
provide information for weighting anonymous hypotheses,
thereby improving the object estimates considerably.

5 Experiments
To validate our approach we captured trace logs of six peo-
ple simultaneously walking around the cubical areas of the
office environment outlined in Figure 3. Each person was
wearing a small id-sensor track-pack consisting of two in-
frared badges and an ultrasound badge. Infrared and ultra-
sound receivers were installed throughout the ceiling. The
entire scene was continually observed by two wall-mounted
laser range-finders scanning at chest height just above the cu-
bical partitions. The duration of the log was 10 minutes, dur-
ing which the individual people moved between 230 meter and
410 meter. In this challenging data log, the paths of people fre-
quently crossed each other and there were situations in which
up to 4 people were occluded by others. To validate our track-
ing algorithm quantitatively, we carried out a series of exper-
iments based on this data log and on additional simulation
runs (seewww.cs.washington.edu/robotics/people-
tracking/ for visualizations).

Tracking ability
The path of the six people as estimated by our system is shown
in Figure 3. This result was obtained with an MHT-RBPF us-
ing 1000 samples and Markov chains of length 100. With this
setting, the algorithm was able to reliably track the six people
if no lookahead was used. After determining these parame-
ters, we carried out trial runs for different variants of our al-
gorithm. A run was considered successful if at the end the

Laser range−finder
Ultra sound receiver
IR receiver

Figure 3: Outline of the Intel Research Lab Seattle. The environ-
ment is equipped with ceiling mounted ultrasound and infrared re-
ceivers. Cubical partitions are half-height (about 1.3 meters high).
The two laser range-finders scan at chest height just above the parti-
tions. Also shown are the paths of the six people as estimated by our
system.

sample set contained at least one hypothesis with correct loca-
tions and identities. Each method was tested on 10 trial runs
using the real data set. Without identity estimation phase, the
algorithm was never able to successfully complete the data
set. Next, we tested the approach when not switching to the
full Rao-Blackwellisation phase,i.e.the algorithm remained in
the identity estimation phase. Without lookahead, the update
times of the approach were prohibitively large (more than 10
times real time). The lookahead resulted in significant speedup
and the results are shown in the first row of the table below.
Finally, we tested our two-phase approach with and without
lookahead. The algorithms were able to successfully track the
complete data in most cases, as can be seen in the first col-
umn. The other three columns give average time, standard de-
viation, and maximum time per update in seconds. The results
demonstrate that both the lookahead and the two-stage process
improve the performance of the tracking algorithm.

Method Succ. Avg. Std. Max.
Id estimation w. look. 10 0.062 0.125 2.9
Two-phase RBPF 10 0.154 0.170 1.5
Two-phase RBPF w. look. 9 0.036 0.060 1.2

In another set of experiments, we compared our MCMC
based assignment generation to a deterministic sampling
scheme, as used in traditional MHT algorithms. Here, as-
signments are enumerated in decreasing order wrt. their like-
lihood [Cox and Hingorani, 1996]. Note that generating as-
signments by decreasing likelihood results in estimates that
are strongly biased towards more likely assignments. We per-
formed extensive tests using real data and data simulating 20
people and found that our approach is slightly more efficient
while achieving the same robustness. Since such results de-
pend on implementational details, we did not consider them
significant enough. However, the fact that smart chain flipping
works at least as good as ranked assignments in practice is
very encouraging, since the MCMC approach results in much
less biased estimates.
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Figure 4:Optimal RBPF sample weights plotted against the sample
weights computed using relative MCMC normalizers.

MCMC weight estimation
In Section 3.1, we introduced an apporach to using the most
recent observation in order to weight samplesbeforedrawing
them for the next time step. So far it is not clear whether this
estimation based on the probabilities of samples drawn from
the Markov chains is a valid approximation. To test the qual-
ity of this approximation, we computed the optimal predictive
weights by enumerating all possible assignments of the next
time step. Figure 4 shows the MCMC sample weights com-
puted in (8) plotted against the optimal weights. The similarity
to y = x suggests that our method of estimating Markov chain
normalizers results in accurate weight estimates.

6 Conclusions and Future Work
We have presented a solution to the problem of tracking mul-
tiple people using a combination of anonymous and id sen-
sors. The approach inherits the advantages of both sensor
types, thereby being able to accurately track people and es-
timate their identity. Our technique uses Rao-Blackwellised
particle filters to make the estimation problem tractable. We
introduced several improvements to the vanilla particle filter.
First, the estimation process is separated into two stages, a first
stage of identity estimation and a second stage of full Rao-
Blackwellisation. A second improvement is in using the most
recent observationbeforesampling from the previous sample
set. In contrast to[Morales-Meńendezet al., 2002], the state
space of our problem can become too large to allow an accu-
rate estimate of the predictive quality of samples. Therefore,
we estimate this quality using Markov chains generating sam-
ples distributed according to the posterior. We demonstrate
the robustness of our approach in a challenging experiment in-
volving six people walking through a confined office environ-
ment. We also show that our MCMC prediction is an accurate
approximation of the optimal weighting function.

The approach introduced in this paper is just the first step
towards a reliable and efficient tracking system. Currently,
the transition between the identity estimation stage and the
full Rao-Blackwellisation stage is based on a simple heuris-
tic, namely the average number of different assignments in the
Markov chains. We intend to replace this measure by a more
fundamental approach such as the overall complexity of the
distribution[Fox, 2002]. Another source of potential improve-
ment lies in the handling of hypotheses. In our current system,
the number of hypotheses grows extremely fast whenever sev-
eral people are close to each other. We intend to overcome this

problem by clustering people into groups for which we do not
attempt to estimate the individual id’s, as already introduced
in a similar context by[Rosencrantzet al., 2003]. Finally, the
recovery from tracking failures is another important issue for
future research. Especially in the full Rao-Blackwellisation
phase, the current approach can not recover from losing the
correct id hypothesis, since id hypotheses do not change over
time.
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