
Dynamic Web-Based User-Interfaces
based on Semantic Descriptions and

Context Informations

Diploma Thesis

Institute of Computer Science III

by: Merlin J. Fotsing

field of study: Advanced Software Engineering

matriculation number: 1506897

advisor: Prof. Dr. Armin B. Cremers

second advisor: MdC Anne-Marie Dery-Pinna

Assistance: Dipl.-Inf. Pascal Bihler

© 2009

Abstract

According to the GSM Association, the number of mobile subscribers is growing at
around 10% rate, each year [TM. 2006; cellular news.com 2008]. One of the outcomes
of this is the rapid growth of mobile Internet, which is foremost due to an increasing
number of sophisticated hand held devices, which are now provided with unlimited
Internet access. Due to this fact, dynamic Web-based applications constitute a se-
rious alternative to close the functionality gap of original mobile applications on
different devices.
However, by delivering Web applications to mobile devices, some presentation re-
quirements have to be fulfilled during the UI adaptation process. These issues include
the content types, the network and device capabilities, such as the delivery context.
To tackle the challenges of the presentation requirements in a flexible way, we pro-
pose a development approach based on an abstract SUID called LAIM. While using
the LAIM to describe the UI, CTs are used to translate and adapt the abstract UI
into a Web UI. Ajax is used to support the Client Server Interaction. This helps to
encapsulate significant application functions and to ensure that only the data needed
is retrieved from the server without reloading the whole application.
With this logic based approach, the complexity of the Web application is low and the
representation of context values in logic databases could easily be included into the
adaptation process. With this combination of logic programming and SUIDs, code
re-use as well as UI usability is improved.

Zusammenfassung

Nach Angaben der GSM Association steigt die Anzahl der Mobilfunkkunden jährlich
um etwa 10 Prozent. Durch Investitionen der Mobilfunkkonzerne in die Datennetze
und die Entwicklung von neuen Endgeräten steigt die Verwendung von mobilen An-
wendungen in den letzten Jahren. Die sog. Daten-Flatrates stellen die Grundlage
für diese Applikationen dar. Dadurch ist es den Firmen möglich Anwendungen los-
gelöst von der verwendeten Hardware der mobilen Geräte zu entwickeln. Die mobilen
Geräte stellen aber auch neue Herausforderungen an den Design der UI’s. Dies sind
unter anderem:

• Art des Inhaltes, welcher angezeigt werden soll.

• Die Netzwerk- und Gerätefunktionen der mobilen Geräte,

• und der Kontext in dem die Anwendung ausgeführt werden soll.

Um den Herausforderungen der Präsentation der Anwendung in einer flexiblen Art
und Weise gerecht zu werden, schlagen wir ein Entwicklungskonzept auf der Grund-
lage einer abstrakten SUID, wie die in dieser Arbeit beschriebene LAIM -Implementierung,
vor. Die Benutzeroberfläche wird mit dieser abstrakten Sprache beschrieben. Diese
Beschreibung wir mit Hilfe der ebenfalls in dieser Arbeit vorgestellten CTs in eine
Weboberfläche übersetzt.
Zur Unterstützung des Client-Server-Interaktion haben wir die AJAX Architektur
verwendet. Die Vorteile von AJAX sind u.a. die Kapselung von verschiedenen Funk-
tionen einer Applikation und die Fähigkeit nur die relevanten Dokumente von Server
neu anzufragen und auch zu laden. Dies führt zu einer Verminderung der mobilen
Datenlast.
Durch die in dieser Arbeit eingeführten Konzepte insbesondere der logische Program-
mieransatz verringert die Komplexität bei der Herstellung, Anpassung und Ausliefer-
ung von Webanwendungen auf verschiedenen Endgeräten. Da die benötigten Kon-
textinformationen problemlos in die logische Struktur eingefügt werden können und
damit einfach in den Anpassungsprozess mit einfließen können. Dadurch wird die
Wiederverwendung des Quellcodes und damit die Usability der Benutzeroberfläche
gesteigert.

Danksagung

Ich danke Herrn Prof. Dr. Armin B. Cremers für die Möglichkeit diese Diplomar-
beit im Bereich der Advanced Software Engineering anfertigen zu dürfen sowie für
die wichtigen Einsichten und Hinweise, die ich durch ihn in diesem Gebiet erhalten
habe.
Für seine fachlich wie menschlich ausgezeichnete Betreuung vor und während der
Entstehung dieser Diplomarbeit möchte ich Herrn Dipl.-Inf. Pascal Bihler sehr her-
zlich danken. Die konstruktive Diskussion mit ihm ist das Fundament dieser Diplo-
marbeit, die ohne ihn nicht möglich gewesen wäre. Sowohl seine Vorschläge als auch
seine Kritik haben mich stets motiviert und dabei geholfen, den Inhalt der Arbeit
weiter zu verbessern.
Ebenso bedanke ich mich bei den Herren Dr. Günter Kniesel, Dipl.-Inf. Tobias Rho,
Dipl.-Inf. Mark Schmatz sowie Dipl.-Math. Daniel Speicher für ihren fachlichen Rat
und die Gespräche, durch die ich meinen Einblick in den Themengebieten weiter
vertiefen konnte.
Außerdemmöchte ich mich bei Marcel Becker, Dipl.-Inf. Mirko Esser, Willy Ngongang,
Nataliya Pendzhurova, Helge Wessels und Dipl.-Inf. Daniel Wolff für die moralische
Unterstützung und die Zusammenarbeit bei den Prüfungsvorbereitungen danken.
Weiterhin danke ich allen Mitarbeitern der Knowledge Discovery & Text Mining
Group aus dem Fraunhofer-Institut für Intelligente Analyse- und Informationssys-
teme für ihre Ratschläge und Unterstützung.
Einen besonderen Dank möchte ich an meine Familie in Kamerun und meine Fre-
undin, Frau Susan Strömbom richten, die mich immer in meinen Entscheidungen
unterstützt haben und stets für mich da waren.

I

Contents

Contents

1 Introduction 1

2 Thesis Scope 3
2.1 Background . 3
2.2 Motivation . 3
2.3 Scenarios presentation . 4
2.4 User Interface - (LAIM) Translation 5
2.5 Interaction Architecture Definition 6
2.6 Client-Server Interactions . 7

3 State of the Art 8
3.1 Delivery Context . 8
3.2 Traditional Web-Application creation methods 10
3.3 Content Adaptation . 10
3.4 Web Application Frameworks . 11

3.4.1 Frameworks using existing modeling Languages 12
3.4.1.1 CONSENSUS and the RIML 12
3.4.1.2 W3C and the DIAL 13
3.4.1.3 SIML state . 14

3.4.2 Frameworks defining own modeling Languages 14
3.4.2.1 The DIWE framework 14
3.4.2.2 HP and the DIWAF 15

3.4.3 Applications using Web Services 15
3.5 Conclusion . 16

4 Model Transformations 17
4.1 Conditional Transformations (CTs) 17

4.1.1 Facts . 18
4.1.2 Rules . 19
4.1.3 Queries . 19
4.1.4 Modules . 20
4.1.5 The Backtracking mechanism 20

II

Contents

4.2 Model Representation in CTs . 20
4.2.1 Meta-Predicates Definition 21

4.2.1.1 Node Facts . 21
4.2.1.2 Relation Facts . 22

4.3 Transformation Rules in CTs . 24
4.4 Conclusion . 26

5 User Interfaces Specification 28
5.1 UI Functionality . 28

5.1.1 State of the Art . 28
5.1.2 Adopted Approach . 29

5.2 Presentation Logic . 30
5.2.1 One Web Principle . 30
5.2.2 UI Presentation Specification 31

5.2.2.1 Content Presentation 31
5.2.2.2 UI update Strategy 31

5.3 Conclusion . 32

6 Language for Abstract user Interface Modeling (LAIM) 33
6.1 LAIM Specification . 33
6.2 LAIM - Attribute Semantics . 34

6.2.1 Semantic of common UI Attributes 34
6.2.2 Semantic of specific UI Attributes 35

6.3 Conclusion . 37

7 Transformation Rules Definition 39
7.1 Rules Requirements . 39
7.2 Transformation Definitions . 40

7.2.1 LAIM-Group Transformation 40
7.2.2 LAIM-Action , -Output Transformation 42
7.2.3 LAIM-Input Transformation 42

7.3 Conclusion . 43

8 Implementation Details 45
8.1 Model Definition . 45
8.2 Client Side . 46
8.3 Server Side . 47
8.4 Transformation Chain . 48

8.4.1 Delivery Context Detection 50

III

Contents

8.4.2 Meta-Model Definitions . 50
8.4.2.1 SUI Meta-Model Definition 50
8.4.2.2 Intermediate Meta-Model Definitions 51

8.4.3 Transformation into SUI Facts 53
8.4.4 Transformation using CTs . 53
8.4.5 Transformation into the Presentation Domain 56

8.4.5.1 Translation into the target Domain 57
8.5 Object-Oriented Principle Simulation 58

9 Evaluation approach 60
9.1 Testing . 60
9.2 Comparison with the RIML Techniques 60

9.2.1 RIML Document Definition 60
9.2.2 LAIM Document Definition 63
9.2.3 RIML Adaptation Engine . 63
9.2.4 Prototype Engineering . 64

10 Discussion 66

11 Outlook 68
11.1 Software used by the author . 69

List of abbreviations 70

Bibliography 75

Eidesstattliche Erklärung 91

Index i

IV

1 Introduction

The Mobile Web Initiative’s goal is to make browsing the Web from
mobile devices a reality.

Tim Berners-Lee

During the past years the capabilities of hand-held communication devices have
grown amazingly. Almost all mobile devices are featured with advanced technology
like a high-resolution color display and a tiny built-in browser to access the Web.
Whereby the consequential side effect is the increasing growth of mobile Web. Unfor-
tunately, there are no standard screen resolutions for mobile devices like there are for
a desktop PC. Furthermore, the embedded browsers are created to take into account
the low bandwidth abilities, the limited display capabilities and the lower memory
capacity in hand-held mobile devices. Furthermore as the case of the desktop browser,
Web standards interpretation differs between different mobile Web browsers. To en-
sure the UI usability and mobility [Johnson 1998], all these limitations and challenges
are to be taken into account when delivering dynamic Web applications to specific
devices. In addition, during the adaptation process, the user goals and the delivery
context are also to be taken into consideration. Since mobile data transfer often costs
money, the user’s goal is often to access to the needed information in a specific con-
text at the lowest cost. The context on the other hand is determined by the position
and environmental factors of the user (e. g. sitting in a coffee shop, a bus, during
jogging)
To deal with device constraints, with the purpose to deliver a device independent
content, it is possible as a first approach to use a software system like digestor [Bick-
more and Schilit 1997] or Pocket News [Hong et al. 2003], to automatically build an
arbitrarily requested Web content for a specific device. But the procedural methods
of these tools are not appropriate to adapt Web sites with a lot of core functional-
ities. In the second approach, the use of an intermediate SUID language based on
XML, such as UsiXML [Limbourg et al. 2004] or XIML, [Puerta and Eisenstein 2002] is
a better option. According to this approach, a separation between core functionality,
UI requirements, and their visual appearance is guaranteed. Unfortunately, there is
a relative overhead by integrating such markup languages in the adaptation process.
To bridge the overhead gap at design time, the use of a relative simple semantic UI

1

1 Introduction

language called LAIM [Bihler et al. 2008], which was defined by Pascal Bihler and
Cédric Joffroy, will be examined. Using the LAIM, data obtained in an intermediate
step of the adaptation process via powerful techniques will be parsed into a dynamic
adaptable Web UI.
This research work aims to handle the user interactions with a Web application,
where the application’s UI is rendered on demand on the server and sent to the
client. Using Ajax, just a partial update of the application should be needed and
depending on the context of use, rendering a whole application in advance might also
be possible [opengardensblog 2006; Garrett; Wei].

In section 2, we will first present, the motivation and the goals of this research paper.
After that, in section 3 we will present the results of the research done in attempt
to achieve the DIW goal. In order to transform the input model, we chose to use
CTs instead of traditional model transformation based on XSLT. For this reason, the
model transformation using CTs is presented in section 4. Thereby, we explained how
the transformation rules requirements specified in section 7, are achieved. Since the
UI Specification encompasses the definition of the UI functionality and the UI model,
the UI functionality is specified in section 5. Thereupon, the UI model specification
is made in section 6. In order to show that our research approach objective was
achieved, we will present an overview of our implementation approach in section 8.
Therewith, we illustrated that CTs are also suitable for model transformations.

2

2 Thesis Scope

In this section we will present the motivation and the goals of this research paper.
Firstly, the backgrounds and scenarios are presented, in order to underline the im-
portance of our research efforts aiming at closing of the functionality gap between
original mobile and desktop applications.

2.1 Background

First of all, the main objective of this work is not to show that model transforma-
tions based on CTs are to be suited as a traditional model transformation using XSL
transformations. However, the background here is to demonstrate that CTs, which
are used to transform static programs, are also suitable for model transformations
in a dynamic runtime environment. Nevertheless, as XSL is a W3C recommended
model transformation language [Clark 1999], we explain in section 2.4 the reason
why we choose CTs instead of XSL as model transformation language.

2.2 Motivation

To capture the developer’s intentions, the major requirement is a declarative lan-
guage, which provides a strict separation between content, structure, layout, presen-
tation, and UI functionalities. For this purpose, there are many community languages
such as RIML, DIAL or SIML. These languages fulfill the requirements of the device
independence principle. For example, they allow the developer to integrate semantic
meta-informations and also offer guidelines for a generic description of the dialog
unit. Furthermore, they embody options for referencing context informations within
the dialog.
All these allow the developer to have a full control over the adaptation process.
However, the relation between the delivered unit, the presentation, and the struc-
ture is still hard-coded within the model definition [Ziegert et al. 2004; Kirda and
Kerer 2004; Ku et al. 2005]. Many others are based on a series of indirections or

3

2 Thesis Scope

bindings (used to link together content and layout) [Giannetti 2002]. Other lan-
guages are platform dependent and need to be executed into a specific environment
(e. g. XAML). Some of them are abstracts from execution environments but not from
widgets (e. g. XIML). Furthermore, most of them are proprietary developments and
the combination with other technologies such as XHTML, Ajax and JavaScript is
not supported.
For this reason an abstract SUID called LAIM [Bihler et al. 2008; Bihler and Kniesel
2007] has been developed. LAIM is sufficiently abstract in order to be applicable in
the definition of desktop UIs and to support the definition of adaptable Web UIs on
fixed or mobile devices.
In order to solve the inability to the Write Once and Run Anywhere (WORA) [Ra-
japakse] problem for mobile applications, Web applications can be built. These have
many advantages, e. g. the Web server power is used to do most of the processing.
Other advantages include that an external storage on databases can be used and
that the device specific UI is generated and sent to the device by the Web server on
demand. All these advantages can also be exploited using the approaches listed in
section 3. Nevertheless, the context and situation of use are not always part of the
adaptation process and the presented languages have their limitations. Currently the
adaptation process often consists of transcoding [wapreview.com Mitt; Hwang et al.
2002], selection and content serialization. Even though the context is part of the
delivery content, the languages used are not developed to follow the WORA principles
for the mobile Web.

2.3 Scenarios presentation

Nowadays people use mobile devices for social interactions and for accessing private
wireless data services (maps, news, emails, etc.) nearly everywhere at any time.
Mobile devices can not only serve as an instrument for social interaction, but also
play a significant role in the business world. Companies have a preference for desktop
application solutions with incorporated Web interfaces, since these applications can
be used anywhere via the Internet. Beside companies, individuals tend to prefer
mobile applications, which can also be executed on desktop PCs like the following
scenario shows.
Scenario: Mobile Web-based MP3 player
Anna owns a touch-based mobile phone with wireless Internet connection. She has
subscribed to a remote mp3-service which works on her phone like a traditional mp3-
player, but receives all music from the Web and her phone is controllable via Web-

4

2.4 User Interface - (LAIM) Translation

Interface.
In the morning, Anna likes to go for a little jogging tour. She prepares the play list for
her tour in advance using her Kitchen-PC with Web connection. Here, the interface
can be displayed with a lot of details, allowing extensive library browsing, cover-flow,
user comments etc.
During her jogging tour, the interface is rendered on her mobile device. Taking into
account the limited display size, most negligible UI elements are not displayed. With
motion sensors, the device indicates a jogging context, so primary UI elements are
enlarged to allow easy interaction while on the move.
Exhausted from her jogging tour, Anna finishes the trip in a small coffee shop. Sitting
there, she can interact with her UI more precisely. Therefore, UI elements can be
displayed with their normal size and more control components become visible on the
mobile device’s interface.
To achieve such a remote Web application we propose a development approach based
on server-side adaptation using an abstract SUID to define the application [Bihler
et al. 2008].

2.4 User Interface - (LAIM) Translation

Because of the many variants of platform- and context specific adaptations that may
be necessary in arbitrary applications, there is an exponential number of possible
combinations. Therefore, implementing adaptations for specific combinations is pro-
hibitive. Instead, we need the ability to build modular and individual adaptations,
and to compose those adaptations when needed. In particular, we must face the
following challenges [Bihler et al. 2008; Kniesel 2006b]:

Modularity and compositionality: It must be possible to specify each adaptation
separately and to compose complex adaptations by reusing existing ones. There
must be no need to modify existing adaptations for this purpose. In particular,
composition must not be limited to a fixed set of anticipated combinations, for
which specific hooks have to be hand-coded into each adaptation.

Interaction detection and resolution: If independently developed adaptations are
deployed together, they might interact in ways not foreseen by their authors.
To make composition possible, it is necessary to have an automated way of
detecting and resolving interactions.

5

2 Thesis Scope

Figure 2.1: General architecture of proposed system: Semantic UI descriptions are
adapted and transformed to Web standards. User events are directly de-
livered to the executed application.

2.5 Interaction Architecture Definition

The use of an SUID has many advantages. First of all, it helps to separate the UI
adaptation process from the application core, it allows sharing of UI adaptation
functionality among several applications, and finally it allows the Web application
to delegate the tasks for interface adaptations to the appropriated layer.
To remain true to these principles, it has to be possible to use many adaptation
layers or simply to change the given one as needed. To deal with the complexity of
the adaptations required by different device capabilities and contexts, we propose
the general architecture of a CT-enabled Web application as demonstrated in figure
2.1.
Referring to this architecture, the (mobile) device connects to an application server,
in our case this might be an instance of Apache Tomcat. A Java Servlet acts as
an entry point and interface to the Java based Web application. When it comes to
UI visualization, the application hands over a semantic description of the required
inputs, outputs, and actions to the rendering system. The handling chain is based
on CTs. During the adaptation process, the abstract input model is translated into
a concrete UI representation. The transformation is done according to the delivery
context. Therefore transformation rules are defined and materialized as Prolog facts
in the fact base (cp. section 7.1).

6

2.6 Client-Server Interactions

2.6 Client-Server Interactions

By using the combination of a SUID and the logic based approach to create the Web
UI, the context data could easily be included in the adaptation process [Rho et al.
2006]. However when the context of use, such as the device capabilities, is part of the
content delivery, the number of Web-service subscribers can increase exponentially
day after day. Therefore, the server would be extremely overloaded for a highly
interactive application. This leads to long processing delays, when the application
would be completely rendered after each user input. To tackle this problem more
automation techniques are needed to deliver interactive components that provide
enhanced application function and an improved user experience [Schmidt et al. 2007].
To solve this problem we proposed a development approach including Ajax. Ajax,
which is a combination of an asynchronous communication technique, JavaScript and
XML, is used to encapsulate significant application functions in ways that are easy
for authors to specify and control [opengardensblog 2006; alliance 2008a]. Ajax is a
combination of several technologies:

Standards-based presentation Supports a presentation in the common standards
using XHTML, CSS, etc.

DOM Dynamic display and interaction using the DOM, which is accessed with
JavaScript.

XMLHttpRequest (XHR) For asynchronous client server communication. Thereby
the XMLHttpRequest object is used to avoid page reloads.

XML and XSLT, or JSON To interchange and manipulate data.

JavaScript Programming language to pool everything together.

Using such an asynchronous communication, just the needed data can be obtained
from the server without reloading the whole application. Additionally, JavaScript
as a language to execute code in a browser, and XML for the ad-hoc manipulation
of a Web application make it possible to support Client-Server interaction without
explicitly clicking a control component on the application [Lewis 2007; alliance 2008b;
Garrett].

7

3 State of the Art

3 State of the Art

Gimson et al. [2003] describes the Device Independence Principles as:
content and applications authored, generated or adapted for a better
user experience when interacting with presentations via many different
access mechanisms.
Thereby the access mechanism, which is an intermediate between the user
an the Web, can be a combination of hardware (including one or more
devices and network connections) and software (including one or more
user agents). This allows a user to perceive and interact with the Web
using one or more interaction modalities (sight, sound, keyboard, voice
etc.)

With the vision of a DIW, theW3C proposes a couple of authoring concepts, amongst
which:

Delivery context: Device characteristics and user preferences.

Delivery unit: As a response to a single HTTP request, the delivery unit can be
composed from a set of data(Markup languages such as XHTML), ECMAScript
(JavaScript) and Objects like video or audio data.

Adaptation: Process of content selection, generation or modification according to
the delivery context, which occurs on the server (server-side adaptation) or
even on the client (client-side adaptation).

In order to achieve the DIW goal, many research attempts were done in the past.
Before we start presenting their results, we will take a look at the way of capturing the
device’s delivery context. After that we will show how the delivery unit is obtained
according to the content adaptation method and the delivery context chosen in those
research projects.

3.1 Delivery Context

There are many standards to capture the device’s delivery context. According to the
W3C there are many existing approaches [Gimson et al. 2006], amongst which:

8

3.1 Delivery Context

Composite Capabilities/Preferences Profiles (CC/PP): Profile to describe the de-
vice capabilities and user preferences [Kiss 2007]. According to Kiss [2007], the
device capabilities and user preferences often refers to the device’s delivery
context and can be used to guide the adaptation of content presented to that
device. This profile is often written in a RDF data model.

WURFL XML file listing capabilities of all known mobile devices [Passani 2008;
Kindler 2007]. Nowadays, the WURL is provided with a framework for device
detection. For this purpose the UA contained in the HTTP Header [Wagner
and Paolucci] is detected via text mining or pattern matching. Using the UA,
the needed device characteristics can be extracted from the database or from
the XML file.

UAProf (User Agent Profile): As Open Mobile Alliance (OMA) standard [Forum
2001; Tran 2002], a UAProf which is based on CC/PP profiles, is an XML doc-
ument that contains information about the UA type and device characteristics.
UAProfs are stored in a server called profile repositories, which is maintained
by mobile device manufacturers. Like the UA, the URL to the UAProf is also
part of the HTTP Request Header.

These delivery context detection methods have its advantages and disadvantages. For
instance, The UAProf method provides more detailed information about the wireless
device and their capabilities, but it is not supported by old devices.
In this work the WURFL framework was used. The WURFL framework provides
a useful API to look up the needed device characteristics from the data base. For
example, as the implemented prototype is a music application, we query the database
to find out if the required audio format (MP3) is supported. More precisely, whether
the client is able to play sound provided in MP3 format. In addition, the other
common needed capabilities comprise the:

• Screen size of the device.

• Supported image formats.

• Supported markup language (XHTML-MP, XHMTL, WML, etc.).

• Supported content type ("application/javascript;charset=UTF-8","text/html",
etc).

• Supported CSS standard.

9

3 State of the Art

3.2 Traditional Web-Application creation methods

To create a remote Web-based service accessible by specific devices, the first solu-
tion is to overcome the obvious standardization by creating a mobile-friendly Web-
Application using Mobile Web Best Practices [Rabin and McCathieNevile 2008]
and open standards. To guarantee a good user experience, many versions of the same
Web site have to be created. While trying to connect to the url [Berners-Lee et al.
1994], one can be automatically redirected to the appropriate content directory. As
there has to be a content directory created for each device type, code reuse is lim-
ited and application evolution is difficult. The second possibility is to use a software
system like digestor [Bickmore and Schilit 1997] or Pocket News, to create or to
translate a given Web page into a mobile-friendly one. However, the resulting Web
pages are not able to support any kind of interactions between the user and the UI.
Furthermore, the application is not able to adapt its response to a client-request in
a device-sensitive way [Glover and Davies 2005].
The advantage of such an approach is the fast access to Web content for a specific
device type. Nevertheless, the device description and capabilities are not part of the
delivery context. This leads to a bad user experience with the application, since the
user- and technical-goals are not tackled. In order to guarantee a good separation of
concern between the UI functions and their presentation, content adaptation on
demand provides a solution. Using the content adaptation approach the business-,
user- and technical goals are taken into account to create a One - Web [Rabin and
McCathieNevile 2008] content for all devices.

3.3 Content Adaptation

Adaptation, also called multi serving, is the action of transforming content by dy-
namically re-flowing it in accordance with the device capabilities [Wikipedia 2008].
Indeed, Content Adaptation is not just about an adaption to the device, it also takes
into consideration the user preferences, context, and location, such as the network
speed and bandwidth.
Currently, there are many different techniques to achieve a better device indepen-
dence for Web applications. These techniques fall into three broad categories:

Intermediate or Pre-Adaptation: Based on techniques such as LCD [Kindler 2007].
It consists of creating many possible versions of the same Web page, which are
optimized for many device classes, and version selection at runtime according
to the HTTP-Header [Group 2002].

10

3.4 Web Application Frameworks

Client-side adaptation: Using this approach the adaptation occurs within the mi-
cro browser, whereas the content is delivered to the device without any prior
transmission of client properties to the server [Koskimies 2004]

Server-side adaptation: The content is adapted and delivered from the server to
the client at runtime due to the delivery context. This technique offers a high
level of author control regarding the delivered content and enables device-
independent authoring.

To separate the UI functionality from its visual appearance, XML SUID languages
are used. To produce the most appropriate adaptation, content adaption is done on
the server. Such a SUID allows the representation of the UI and its artifacts (for-
mal functionalities) at different levels of abstraction and can contain transformation
rules, which will be taken into consideration during the adaptation process.
There are many research approaches for device-independent authoring, which try
to take into account and adapt the content accordingly upon delivery [Butler et al.
2002; Hanrahan and Merrick 2004; Manuel Cantera Fonseca and Hierro 2007]. Ac-
cording to the DIWG, new hand-held devices often have new capabilities and are
able to exploit features of newer generations of networks, while connecting to the
Web [Lewis Sond]. Due to that observation, more powerful abstraction mechanisms
are required to ensure the usability of existing applications.
To solve this problem, many authors adopted the declarative programming [OpenWiki
2004; Torgersson 1996] concept. To fulfill the declarative programming requirements,
many languages such as XAML [Foundation 2009], XUL [Goodger et al. 2008; Feldt
2007] or JSF [MicroSystem 2009] were created. These languages are based on a
higher-level tag-based abstractions and are also sometimes called SUI [Tilly et al.
2007]. Besides these languages there are other SUI languages such as UsiXML [Lim-
bourg et al. 2004; Francisco M. Trindade] or XIML [Puerta and Eisenstein 2002].
To achieve the DIWG goals, some server-side programming languages such as Java,
C++ or XSLT and XPath are used to translate the described UI into a Web-UI.

3.4 Web Application Frameworks

In the literature there are many approaches covering the single authoring principles.
All these approaches have a common base. According to Ziegert et al. [2004] aDIWF
should offer:

11

3 State of the Art

A device independent markup language: Used to capture or to preserve the in-
tention of the author.

An adaptation system: To transform the input model into a specific presentation
model.

Author control over the final presentation Thereby the maintenance effort should
not increase significantly.

In addition, according to Kirda and Kerer [2004], a DIWF should also meet some
requirements. For example the proposed markup language should be platform in-
dependent, open standard, flexible, extensible, etc. The framework such as the im-
plementation language should be platform independent. It should support the gen-
eration of applications according to the delivery context. The delivery unit should
include industrial standards like XHTML to enable the use of existing development
tools. In the end, it should also enable the definition and generation of content and
layout for non XML Web based services.

In the context of device independent delivery there are many proposed research
approaches. These approaches are classified in two trends. First, existing language
profiles and content models are extended with new features in order to approach the
device independent Web engineering principle. On the other hand, new languages are
created to directly address those principles. Therefore, some transformation engines
used to translate the designed model into the presentation domain are developed.

3.4.1 Frameworks using existing modeling Languages

3.4.1.1 CONSENSUS and the RIML

In year 2002 the CONSENSUS1 project [Ziegert et al. 2004] was started. The goals
of the project were:

• To provide a standardized markup language called RIML to uncover the gaps
in current standards2.

• To specify a usability guidelines for DIAD.

• The specification of a DIAD Architecture.

• The implementation of authoring and conversion tools working within the
Eclipse IDE.

1IST-Programme / KA4 / AL: IST-2001-4.3.2. The project CONSENSUS was supported by the
European Community.

2http://natalian.org/archives/2004/09/27/riml/

12

3.4 Web Application Frameworks

The developed RIML [Grassel et al.] is based on W3C technologies: XHTML 2.0,
XForms, SMIL [Bulterman et al. 2008] and extensions. The extensions consist of new
elements included in the XHTML standard to describe the functionality, the layout,
the content control, the pagination, navigation, grammar, and error recovery elements
for voice. A couple of authoring and conversion tools implemented to support a
productive content authoring include:

XML Editor: For code completion, schema validation and also tree editor.

Frameset view: To provide abstract layout preview.

Device dependent view: For an adaptation result preview.

Preview functionality: Based on existing emulators.

The application layout definition with RIML encompasses the definition of layout
module with layout container (column, row, paginatingRow, paginatingColumn) and
hierarchical frame layout modules. Container properties are specified by attribute
tags. The layout definition is enclosed in the <head/>, and the content definition-in
the <body/> tag. The content is defined in different section elements using XHTML
markups that are mapped to frames according to the layout definition in the head
file. The adaptation engine is structured in two adaptation phases (Semantic and
Syntactic Adaptation). The major tasks can be described as follows: The client re-
quest is received from the server (e. g. a tomcat container). According to the request
the client is recognized based on the UAPROF method (cp. 3.1). In the next step
the content is adapted according to the client characteristics (Content reduction).
Finally, the adapted content is transformed into the targeted markup language. The
Content Adaptation mechanism is based on device classes. In the content defini-
tion section optional and alternative contents, such as the pagination properties, are
defined for each device class. Therefore, layout definitions for each defined content
according to a group of device class must be provided in the <head/> tag.

3.4.1.2 W3C and the DIAL

DIAL [Smith 2007] is the language profile proposed by the W3C to allow consistent
delivery across devices and contexts. As a subset of XHTML version 2, DIAL is an
XML language profile based on an existing W3C document profile such as XFORMS
and content selection [Lewis et al. 2007] mechanisms for device independence (DIS-
elect) [Lewis et al. 2007]. DIAL allows to capture the author intentions, thereby
iignoring the conditions under which the content should be selected or filtered. Since
DIAL is a subset of XHTML version 2, it allows authors to define variable business

13

3 State of the Art

rules which allow content to be selected or excluded for rendering. For example,
a variable rule could indicate that the content should only be shown in a certain
location.

3.4.1.3 SIML state

In general, the user interacts directly with Web or desktop UI. Jansen and Bulterman
[2008] presents a novel approach in which the time and the geographical information
is used as the major structuring paradigm. In this approach SIML state is used to
add an user-defined state or an external data model to the declarative time-based
languages SIML [Bulterman et al. 2008]. The data model externalization allows it to
be shared with other components. SIML is a W3C recommendation that allows au-
thors to write interactive multimedia presentations. As a declarative language, SIML
allows the author to specify the relations between multimedia objects by describing
the temporal behavior of a multimedia presentation. Using SIML the author can also
define the references to the media objects and the presentation layout. With SIML
state, new variables and communication can facilitate the interaction with specific
domain requirements. SIML state can also serve as a bridge to external UI com-
ponents. Additionally, the declared variables allow full control over the selectively
rendered content.

3.4.2 Frameworks defining own modeling Languages

3.4.2.1 The DIWE framework

The DIWE framework presented in Kirda and Kerer [2004] is based on the MyXML
language. MyXML is an XML-based language, used to enable a separation between
layout, content and application logic and also to model the application. A MyXML
language compiler is used to process the language and generate static content, which
is embedded in HTML or XML according to the application’s specification. This
language [Kerer and Kirda 2001]3 supports the definition of loops, variables, and
database access functions. The framework is provided with a visual IDE (Integrated
Development Environment) called MyXMLDesigner and four default runtime pro-
cessors, to provide device-independent content according to the delivery context. The
runtime processors provide some techniques such as:

3The project was supported in part by the European Commission in the Framework of the IST
Programme, Key Action II, on New Methods of Work and eCommerce. Project number: IST-
1999-11400 (MOTION) and in part by the Austrian Academy of Science.

14

3.4 Web Application Frameworks

Device detection: Processor for device detection and identification.

Logic Interfacing: To provide an application logic integration and invocation ac-
cording to the model specified using the MyXML language.

Page splitting: To provide the intelligent layout adaptation according to the device
capabilities.

Process partition: Page splitting method used to incrementally display Web forms.

To allow the reuse of existing XSL stylesheets and to reduce the maintenance over-
head, the framework also provides a technique called XSL stylesheet pre-processing.
As shown in [Kirda and Kerer 2004, p. 98] MyXML language is used for application
specification in the design phase. In this phase the application layout as well as the
application logic are defined. After the Web application has been generated and the
domain logic has been written, the runtime processors are used to filter and adapt
the output stream to suit to a particular device. Thus the adaptation process occurs
in a later step of the deployment, and not during the implementation.

3.4.2.2 HP and the DIWAF

The DIWAF [Giannetti 2002] from HP Laboratories Bristol is another effort to
solve the single authoring problem. The approach also starts with a single device-
independent description, which includes meta data that can guide the adaptation
process. As in the CONSENSUS project the content is defined for device classes.
Here, alternative content is also defined for each device class. For completely differ-
ent devices it is possible to enrich the original content with optional information.
The Framework is based on a series of indirections or bindings (used to link together
content and style), which is used to enable the separation between the layout, the
selected content and the style. The adaptation process is based on content selection
according to the element priority and alternative contents. Thereby the interaction
model is defined using extended XForms to support the priorities and the binding
model.

3.4.3 Applications using Web Services

Nowadays Web applications are also developed by combining different Web services.
In [Kreger 2001, p. 6] a Web service is defined as an interface, which describes a
collection of operations that are network-accessible through standardized XML mes-
saging. Thereby a Web service is described using a standard, formal XML notion

15

3 State of the Art

called service description. Different Web services can seamlessly interoperate to carry
out complex business tasks. For building such a Web application, which incorporates
the use of Web services, a research approach based on declarative UI was presented
in Kawash [2004]. This approach, also based on the single authoring principle, re-
quires authors to declare the UI. Using a small engine that is deployed on the client,
the UI specifications are downloaded through the Web service and interpreted on the
fly according to the delivery context. The UI functionality is specified by a tailored
form of finite state machines defining the:

• application states

• UI component in each state

• transition between the states

• and finally a mapping between the UI element and the Web service.

3.5 Conclusion

The research approaches presented here allow a single content authoring and an adap-
tation mechanism according to the delivery context. Thereby the content adaptation
requirements are always the same:

• Separation of domain logic from the presentation logic using subsets of existing
language profiles like XHTML, SIML or new languages (MyXML).

• The defined languages allow the developer to integrate semantic meta-information.
They also allow a generic description of the delivered units. Optionally the in-
teraction with the application logic can also be specified.

• The resulting frameworks provide the detection of device and network charac-
teristics. The collected informations are used to guide the adaptation process.

Using these technologies the developer is required to specify the user interface only
once. To generate the content according to the delivery context the developer must
provide XSL stylesheets for each target family of devices and the appropriate one is
selected during the runtime.

16

4 Model Transformations

In Kleppe et al. [2003]; Visser [2005] model transformation is defined
as: The automatic generation of a target model from a source model,
according to a transformation definition. A transformation definition
is a set of transformation rules that together describe how a model in the
source language can be transformed into a model in the target language.
A transformation rule is a description of how one or more constructs
in the source language can be transformed into one or more constructs
in the target language.

Moreover, model transformations also include transformations from a more abstract
(e.g., LAIM modeled in a XML or an Object Oriented (OO) form) to a more concrete
model (e.g., XHTML, XHTML-MP) [Mens et al. 2005]. According to the transforma-
tion principles, the syntax and the semantics of the modeling language are expressed
by a meta model (e.g., XSD [Gao et al. 2009] or UML [OMG 2009]). Due to the
fact that the output and the input models are expressed in different languages or
concepts, an exogenous transformation also called translation [Visser et al.] is per-
formed. According to Mens et al. [2005], the source model (LAIM) and the target
model (XHTML, etc) belong to two different technological spaces. To bridge those
spaces, CTs are used.

4.1 Conditional Transformations (CTs)

Conditional Transformations (CTs) are a logic-based language and
formalism for expressing arbitrary software transformations guarded by
arbitrarily complex preconditions. The transformation part of a CT is
executed for all elements that fulfill the CT conditions [Kniesel 2006a;
Kniesel and Koch 2003].

As a theoretical and practical basis for endogenous model transformations [Kleppe
et al. 2003] and model driven engineering [Schmidt 2006], CTs make a strict separa-
tion between model analysis (conditions) and model modifications (transformations)

17

4 Model Transformations

����������������������������������

����������������

��������������������������

�������

���������������������

�������������������������������

������

��

Figure 4.1: CTs Representation

(cp. figure 4.1). Similar to Prolog, analysis results (terms) are constructed via vari-
able unifications. Thereby the model or the program artifacts are represented as
logic facts or predicates [Kniesel 2006a; Shapiro and Sterling 1994]. However, unlike
in Prolog, no side effects occur during the program analysis. In order to explain
the CTs functionalities a brief overview of program element Facts, Rules and the
Queries used in the conditional part follows.

4.1.1 Facts

According to inc. [2004], facts are the simplest form of Prolog predicates and are
similar to records in a relational database. For example a fact is defined as a term of
the form ′pred(arg1, arg2, ...argN).′. Thereby the predicate name is pred, argi, i =
1, ..., N are predicate arguments, N is the arity and . the syntactical end of all
Prolog clauses.

A fact (cp. listing 4.1) in CT consists of a predicate such as laimGroup, laimEnabled,
or enabled and its arguments. In this example, enabled is a predicate of arity 0.
The arguments are legal Prolog terms. A term can be a digit, an atom (a constant
beginning with a lowercase letter), a variable (a universally quantified [cs.odu.edu
2003] construct beginning with an upper letter) or a structure (e. g. aggregation of
Prolog facts, lists). A universally quantified construct can be defined as a logical
predicate that will be bound to a term during the program execution, depending on
the context in which it is used.

Listing 4.1: Example of Prolog Facts

1 laimGroup(iplayui,root,[image,songs,player,context,play,volume,time]).
2 laimEnabled(iplayui).
3 enabled.

18

4.1 Conditional Transformations (CTs)

4.1.2 Rules

Rules are stored queries. They permit to describe a relationship among facts, the
interference between these facts or how a fact can be deducted from another fact.
Since CTs are related to Prolog, Prolog rules are universally valid in CTs (cp. list-
ing 4.2). In the literature, Prolog rules are also called Horn clauses. A Horn clause

[Padawitz 1988] is a clause of the form: p1 ∩ ∩ pn ⇒ q or [¬p1, ...,¬pn, q].
Thereby, pi i = 1, ..., n are positive atoms and q is the goal. Listing 4.2 demonstrates
how a Horn clause is used. Thus, a Horn clause is a clause with at most one positive
literal:

lhs : − rhs1, rhs2, ..., rhsN .

Thereby lhs is the left hand side, rhsi i = 1, ..., N the right hand side of the clause
and : − is the logical implication.
In the literature the rules and the facts are also called clauses. Clauses are assertions
about a Closed World. The Closed World Assumption [Daintith] suggests that
the domain in which the model is defined is explicit and well-defined.

Listing 4.2: Rule definition
1 %<− X and Y are siblings if they have the same mother
2 sibling (X,Y) :− mother(Z,X), mother(Z,Y).
3

4 %<− mother and sibling are predicates
5 %<− merkel is the mother of angela
6 mother(merkel,angela).
7 %<− merkel is the mother of ingrid
8 mother(merkel,ingrid).

4.1.3 Queries

Queries are statements which are used to make assertions by pattern matching in
the data base. A query pattern also called a goal can be a simple fact or a fact with
one or more names replaced by variables (cp. listing 4.3). Prolog’s pattern matching
is called unification [inc. 2004]. A Query can also be an instruction, which is used to
update the model.

19

4 Model Transformations

Listing 4.3: Querying the fact base in a Prolog manner
1 ?− mother(merkel,angela).
2 yes.
3 ?− mother(merkel,ingrid).
4 yes.
5 ?− mother(Mother,angela).
6 Mother = merkel.
7 ?− mother(Name,Child).
8 Name = merkel,
9 Child = angela ;

10 Name = merkel,
11 Child = ingrid.
12

13 ?− sibling (angela,Y).
14 Y = ingrid.

4.1.4 Modules

Like in Prolog, predicates are organized in modules. This provides namespaces for
predicates defined within the modules and allows users to redefine system predicates.
The default module is the user module. The user module contains all predicates,
which are not explicitly declared in a module. The predicates included in the user
module are module transparent [Wielemaker 2008]. The system module contains
all other module transparent build-in predicates.

4.1.5 The Backtracking mechanism

The backtracking mechanism from Prolog, as described in Iyengar [1994], is also used
in CTs. This mechanism is used in rules (e. g. 4.1.2) to find multiple solutions to a
query.

4.2 Model Representation in CTs

To represent the model a gAST is used. In the Literature an AST is defined as:

The representation of Source Code as a tree of nodes representing con-
stants or variables (leaves) and operators or statements (inner nodes).
It reveals the lexical/syntactical structure of the program text, which is
sometimes related to the semantic structure of the program.

20

4.2 Model Representation in CTs

According to Kniesel [2006b] the model gAST is defined as a typed and labeled graph.
In this way, a program or a model is represented as a set of nodes. Each node has an
UID, a type, a set of typed attributes and edges referring to other nodes. E. g. the
generalized representation of a logic node is as follows:

node =< id, type, attr1,, attrn, edge1,, edgem > with

attri =< namei, typei, vali > i = 1, ..., n

edgej =< namej , typej , valj > j = 1, ...,m

To ensure the Closed World Assumption and to avoid redundancy in the model,
model specific meta-information or meta-predicates are to be defined. The resulting
representation of the model in the fact base should fulfill the gAST specification.

4.2.1 Meta-Predicates Definition

The gAST specification allows the definition of node and relation facts which is
part of the sub tree of a node fact.

4.2.1.1 Node Facts

In this work, according to the generic way of the gAST, we define a node fact as a
fact of the form:

type(id, attra1 , attra2 , ..., attran)
or

type(id, parentid, [attra1 , attra2 , ..., attran])

Thereby, the predicate type is the node type (cp. 4.2), id is the UID of the node,
attrai i = 0, 1, ..., n represent references to other nodes4 (e. g. cp. listing 4.1). The
parentid is the reference to the parent node and [attra1 , attra2 , ..., attran] represents
the reference list, also called children nodes of the current node. Since each AST
node of the program is represented as a logic fact, a node fact refers to its parent via
its second attribute.

4https://sewiki.iai.uni-bonn.de/research/ctc/start

21

4 Model Transformations

Listing 4.4: Node facts definition in CTs
1 :− multifile ast_node_def/3. % ast_node_def of arity 3 may be defined in many files
2

3 %general predicate definition
4 ast_node_def(context,predicateName,[% a predicate is always used in a context call language
5 ast_arg(id, mult(1,1,no), id , [predicateName]),
6 ast_arg(parent, mult(1,1,no), id , [parentnode]) %reference to the parent element
7]) .
8

9 ast_node_def(context,predicateName,[
10 ast_arg(id, mult(1,1,no), id , [predicateName]),
11 ast_arg(parent, mult(1,1,no), id , [parentNode]), %reference to the parent element
12 ast_arg(children, mult(0,∗,ord) , id , [id]) %ordered list of reference elements
13]) .
14

15 %definition of laimInput and laimGroup predicates
16 ast_node_def(’Laim’,laimInput,[
17 ast_arg(id, mult(1,1,no), id , [laimInput]),
18 ast_arg(parent, mult(1,1,no), id , [laimGroup])
19]) .
20

21 ast_node_def(’Laim’,laimGroup,[
22 ast_arg(id, mult(1,1,no), id , [laimGroup]),
23 ast_arg(parent, mult(1,1,no), id , [laimGroup]),
24 ast_arg(children, mult(0,∗,ord) , id , [id])
25]) .

4.2.1.2 Relation Facts

A relation fact is designed or represented just like a node fact (cp. 4.2.1.1). Actually
a relation fact is used to express optional node fact’s attribute values. The attribute
in the first position is always the UID of a given node fact (e. g. cp. listing 4.5):

name(id, [attrV ala1 , attrV ala2 , ..., attrV alan])

Where attrV alai , i = 0, 1, ..., n represents the attribute value of a given node fact
with UID id. A relation fact can also be used to express the connection between
many other node facts. It serves to organize foreign keys as in a relation data base
(e. g. cp. listing 4.6):

name(attra1 , attra2 , ..., attran)

22

4.2 Model Representation in CTs

Name is the relation name or the relation type and attrai , i = 0, 1, ..., n represents
the UID of a given node fact.

Listing 4.5: Relation Fact in CTs

1 :− multifile ast_relation/3. % ast_relation of arity 3 may be defined in many files
2

3 %general predicate definition
4 ast_relation(context,predicateName,[% a predicate is always used in a context call language
5 ast_arg(parent, mult(1,1,no), id , [predicateName]) % parent id: required
6]) .
7

8 ast_relation(context,predicateName,[% a predicate is always used in a context call language
9 ast_arg(parent, mult(1,1,no), id , [predicateName]), % parent id: required

10 ast_arg(attrVal, mult(1,1,no), attr , [atom]) %reference to the parent element
11]) .
12

13 ast_relation(context,predicateName,[
14 ast_arg(id, mult(1,1,no), id , [predicateName]), % parent id: required
15 ast_arg(parent, mult(1,1,no), attr , [atom]), %reference to the parent element
16 ast_arg(children, mult(0,∗,ord) , attr , [atom]) %ordered list of reference elements
17]) .
18

19 %definition of laimDefaultValues and laimGroup predicates
20 ast_relation(’Laim’,laimEnabled,[
21 ast_arg(id, mult(1,1,no), id , [id]) % <−− convention!!!
22]) .
23

24 ast_relation(’Laim’,laimDefaultValues,[
25 ast_arg(id, mult(1,1,no), id , [laimInput]), % convention
26 ast_arg(defaultValues, mult(0,∗,ord), attr , [atom]) %ordered list of laimInput default

values
27]) .

In listing 4.6 a jsConnecto serves to imply the relation between a jsLabel and a
jsInput.

Listing 4.6: Another relation fact in CTs

1 %jsConnecto predicate definition
2 %a jsConnecto serves to imply the relation between a jsLabel and a jsInput
3

4 ast_relation(’Intermediate’,jsConnecto,[
5 ast_arg(id, mult(1,1,no), id , [jsLabel]) , % convention
6 ast_arg(connecto, mult(0,1,no), id , [jsInput])
7]) .

23

4 Model Transformations

Using the gAST specification the model can be translated into logical facts. The
result of the translation serves as input model for the transformation. To transform
the input model into the target domain, transformation rules have to be defined.
They describe how a model in the source language can be transformed into a model
in the target language.

4.3 Transformation Rules in CTs

Since CTs are purely declarative, transformation rules have to be built to transform
the input model into the target model. These rules are used in the condition part of
the CTs and are materialized as a set of analyses and preconditions. Since transfor-
mation rules are part of CTs, henceforth in this case study we consider a CT as a
transformation rule (cp. 4.1). To formulate the transformation rules there are two
proposed CTs syntaxes5:

Native CTC Syntax Used to create individual CTs and CT sequences.

Sugared CTC Syntax Also used to create individual CTs and CT sequences but is
more concise than the native syntax.

The native and the sugared CTC Syntax have the same meaning and consist of:

Head Name of the CT and its parameters.

Condition According to the common Prolog syntax the condition part consists of an
arbitrary logic expression.

Transformation Consists of conjunctions of addition (add), deletions (delete) or
term replacement (replace).

Variables A universally quantified parameter (cp. 4.1.1).

Constants Also a parameter which starts with a lower case letter or is enclosed in
simple quotes.

At the start of this work, the sugared CTC syntax was not included in the stabled
release, so that we choose to use the native CTC syntax. However the most important
differences between the native and the sugared CTC syntax is the use of terms as
operators (e. g. ct, condition, transformation, etc.) 6 in the native syntax and on the
other hand the explicit use of algebra operators (e. g. ::, »>, ++, etc.)7. Listing 4.7

5https://sewiki.iai.uni-bonn.de/research/ctc/language
6https://sewiki.iai.uni-bonn.de/research/ctc/native_ct_syntax
7https://sewiki.iai.uni-bonn.de/research/ctc/sugared_ct_syntax

24

4.3 Transformation Rules in CTs

demonstrates the use of CTs in the native syntax. Variables such as constants are
found in the head, condition such as the transformation part. The head of the CT
is:

translateLaimGroupWithDepthTWO(Id,2,’false’)

The condition part is enclosed in condition(...) and the transformation part in
transformation(...). In the common CTC syntax an UID creation part which is
enclosed in idcreation(...) is also available. However, this part is not used, since
arbitrary ids are created in the UID creation part. Hence, CTs are used for runtime
model transformations on demand and the created ids are used to control the Client-
Server interaction. Instead, common ids are just transformed into new ids. E. g. the
terms:

transform_id(’js’, Id, NewId)

or
jsGenerateIdList(Id,NewChildIdList,ChildIdList,0,’false’)

are used to transform the Id passed as parameter in the CT head or the ChildIdList
found by querying the data base into a NewId or into a list of new reference ids
(NewChildIdList).

Listing 4.7: Sugared CTC Syntax in used
1 ct(translateLaimGroupWithDepthTWO(Id,2,’false’),
2 condition((
3 laimGroup(Id,ParentId,ChildIdList),
4 jsGenerateIdList(Id,NewChildIdList,ChildIdList,0,’ false ’) ,
5 transform_id(’js’ , Id, NewId),
6 transform_id(’js’ , ParentId, NewParentId),
7 (laimElementTag(Id,DefineTag) −> Tag = DefineTag; Tag = ’div’)
8)) ,
9 transformation((

10 add(htmlNode(NewId,NewParentId,NewChildIdList,Tag))
11))
12) .

By developing the transformation rules some requirements have to be met (cp. 7).
Therefore the granularity of each rule should be guaranteed when defining a rule as
a CT. In addition to the granularity, the composition of the defined rules should be
possible. According to the fundamental principles of software engineering, programs
should be developed incrementally by defining several units and their interfaces,

25

4 Model Transformations

and then by composing those units. Based on this notion of program composition,
O’Keefe [1985] interprets logic programs as algebraic elements and modeling their
composition in terms of algebraic operators. In Bugliesi et al. [1994] this conceptual
approach is used to extend the syntax of programs with new logical connectives that
support abstraction mechanisms and to define a variety of powerful composition
mechanisms.
The composition mechanism in CT is provided by CT sequences8. They are used to
compose individual and unitary CTs into an executable sequence. The composition
mechanisms allowed by the CTs syntax are as follows:

Orseq The OR sequence denotes a sequence without history propagation.

Propseq In PROP sequence successful substitutions are propagate from left-to-right.

Negprop Failed substitutions are propagate from left-to-right in the NEGPROP
sequence.

Andseq Finally, the AND sequence denotes a bidirectional history propagation.

Beside OR, PROP, NEGPROP and AND sequences, which are the four main se-
quence operators, a LOOP sequence defined syntactically as a loop(first, second)
can also be used. This sequence denotes a fix point iteration of the sequence passed
in the second argument. In order to compose CT sequences, the CTC proposes the
definition of procedures. Procedures are introduced with ctseq (CT Sequence). List-
ing 4.8 demonstrates the definition of a procedure.

Listing 4.8: CT sequences in used
1 ctseq(ctseqHead(ctseqParameters),
2 orseq(
3 ct(ctHead1(firstCTparameters)),
4 andseq(
5 ct(ctHead2(2ndCTparameters)),
6 ct(ctHead3(3thCTparameters))
7)
8)
9) .

4.4 Conclusion

In conclusion CTs provide a theoretical and practical basis for model transformations.
Similar to Prolog the software artifacts are represented as logic facts [Kniesel 2006a;

8https://sewiki.iai.uni-bonn.de/research/ctc/native_ct_syntax

26

4.4 Conclusion

Kniesel and Koch 2003]. Unlike Prolog during the CTs execution, the model analysis
and the model update do not interfere. The transformation part of a CT is executed
for all elements that fulfill the condition part of the CT. Compared to other model
transformation approaches CTs provide a unique combination of features [Bihler
et al. 2008; Kniesel 2006a], amongst which:

Purely Declarative Unlike imperative programs with side-effects (including Prolog
programs that manipulate their own factbase) CTs have a well-defined, model-
theoretic semantics. Hence CTs are easy to compose, analyse and optimize
automatically.

Composable Different composition operators, of which some are unique to CTs,
allow creation of complex programs from simple, reusable units. Composition
is possible even if not anticipated by the designers of the existing CTs. No hooks
need to be built into CTs to enable their reuse in unanticipated contexts.

Analysable Automated analysis and resolution of interactions between CTs is pos-
sible [Kniesel and Bardey 2006; Kniesel 2008] thus providing the basis for the
related interaction analysis of adaptations expressed by CTs.

Multi-Directional A CT with N arguments is like N ! functions, since each argument
can be used as input or output. E. g. the same CT procedure (ctseq) can be
used to transform an input element into a jsInput element from any type with
the referring node elements. This depends only on the way the CT is called or
on the input model which is transformed without the need to rewrite the CT
procedure.

27

5 User Interfaces Specification

5 User Interfaces Specification

The UI Specification encompasses the definition of the UI functionality and the UI
model. This chapter is dedicated to the UI functionality and the presentation logic
specification. The UI model specification will be done later in section 6.

5.1 UI Functionality

In this section we will firstly present the UI functionality specification approaches,
defined in the literature. Thereby we try to evaluate which methods can be inte-
grated in our development approach. Then, we will focus on the UI functionality
specification approach that we have adopted.

5.1.1 State of the Art

In the literature many UI specification approaches are presented. Amongst others,
there is the method based on conceptual pattern language JUST-UI for UI specifi-
cation [Molina et al. 2002]. According to Molina [2004], JUST-UI is described as a
pattern language extension to the OO-Method [Pastor et al. 1997]. The OO-Method
allows the UI specification with a set of graphical models. This OO-Method provides
an OO software production environment and is based on two components:

Conceptual model Used to capture the system structure.

Execution model: An automated translation model. It is used to generate the data
sources and the logical modules in the desired implementation environment
and language [Gómez et al. 2001].

JUST-UI also proposes a series of mappings which helps to convert the abstract UI
specification into a concrete implementation for different devices. A UI code gener-
ator uses these mappings to produce the UI code.
The user-centered approach called the OO-H (Object-Oriented-Hypermedia) method
[Gómez et al. 2001] is also based on the OO-Method. It proposes a methodology to

28

5.1 UI Functionality

combine the software artifacts (structure, behavior and presentation) in order to pro-
duce the final software product. Like the JUST-UI approach, the OO-H method is
based on a pattern catalog language. These patterns are used to capture the abstract
interaction model between the user and the application. Furthermore, the pattern
catalog proposes a set of constructs that effectively cover the problems identified
within Web environments.
In this work approach the evaluation of the pattern catalog proposed in the OO-H
method is out of scope. Nevertheless, the OO-H method approach seems to facilitate
the reuse of design experiences and the consistency among the different interface
modules. In order to solve well-know hypermedia application development problems,
the OO-H method also proposes a set of interaction patterns.
To design the UI interface the OOHDM [Schwabe and Rossi 1995] approach proposes
to break up the hypermedia application development into four steps. Thereby each
step focuses on a particular design concern. This concept is used in Karimpour et al.
[2008] to build Web-based Applications based on the J2EE Technology. By mapping
the design artifacts created in OOHDM into J2EE components, the interface usabil-
ity increased and the development time was improved.

5.1.2 Adopted Approach

The results of the above presented research approaches can be used for large appli-
cation development projects. However, unlike in Karimpour et al. [2008] where the
MVC architecture is used, we chose to use the MVP [Potel; Law 2007] instead. MVP
is used to extract the business logic from the presentation logic. By using an interface
to interact with the view, the MVP is also used to separate the UI specification from
the UI implementation.
A UML state diagram [OMG 2009] can be used to model our business processes. In
this way, we found the modeling concept by [Kawash 2004, p. 2] better than the sim-
ple use of state diagrams. Kawash [2004] has defined a form of extended FSM called
UIFS. The UIFS was used in that research to specify the UI functionality for a Web
service. As we know, a Web service UI can also be a part of a Web application. So
we adopted the idea found there to specify the UI functionality used in our research
approach.
For our purpose a UIFS is also defined as a triple (S, T ,M), where:

S is a set of states, with an initial (state after the first application rendering) and
an implicit final state (by session expiration or even when the application is

29

5 User Interfaces Specification

leaved). Each state in S is also a collection U of UI components with an assign-
ment function A defined on U . More precisely, the application running on the
server is always on a specific state S. According to this state, the whole UI or
just a part of the UI is rendered and sent to the client. The UI consists of UI
components. Each UI component is linked with JavaScript callback functions
used to control the UI interactions.

T is in this case just a labeled transition function on S. E. g. a function like play()
to play a song, when the play event is initiated.

M is defined as a mapping that associates a UI component (the id of that compo-
nent), with an event type and the method executed on the server.

Two event types are defined here:

Input Change Used to execute a server side method according to the user selection.

Output Change Used to trigger a content update of the corresponding UI compo-
nent.

Similar to the hidden control principles declared in that work [Kawash 2004, p. 3],
UI elements produced using the UI description in LAIM can also be hidden elements
(cp. 6), when they were described as disabled. Whether an element is hidden or not
depends also on the state of the application. E. g. during the load time an image
can be enabled (to show that the application is loading) and after the application
is completely rendered the image can be disabled. To deal with such interaction
asynchronous Ajax call-back functions are used to manipulate the DOM [Hors et al.
2004].

5.2 Presentation Logic

The presentation logic specification covers the definition of the UI presentation on
the client, such as the definition of a UI update strategy. Since the delivery context
plays a significant role, the adaptation engine should be designed to deliver content
and presentation in accordance to the One Web Principle (OWP) requirements.

5.2.1 One Web Principle

Rabin and McCathieNevile [2008] defines One Web as the possibility to make the
same information and services available to users irrespective of differences in pre-
sentation capabilities and access mechanisms. This means that the provided service

30

5.2 Presentation Logic

should be accessible on a wide range of devices. Thereby, the delivered content must
be thematically coherent and must provide a good user experience when accessed
from different devices. However, as suggested in the W3C guidelines, it does not
mean that precisely the same information must be available in exactly the same rep-
resentation across ubiquitous devices.

5.2.2 UI Presentation Specification

The presentation definition begins during the interface design. Each UI component
has an UID. This UID is used to identify the component either on the client and
on the server side or also to determine the CSS [Bos et al. 2009] stylesheet. During
the stylesheet definition, the Mobile Web Best Practices [Rabin and McCathieNevile
2008] guidelines should help to improve experience.

5.2.2.1 Content Presentation

To ensure the OWP, we provide the mechanism to produce the final presentation
domain according to the UI capabilities. This mechanism provides the ability to de-
fine element tag according to the targeted markup language. Thus, the developer can
define element tags, attributes and attribute values according to the target domain.
To specify the element tags common markup profiles can be used [Axelsson et al.
2006; Oshry et al. 2007]. OMA presents an overview about the OMA standards. For
a rapid start, the developer can also use the WML, cHTML, and XHTML-MP com-
parison approach done in Woo and Jang [2008]. The developer network [Network
2009] also proposed a style guideline for beginners. Using the W3C or the OMA
recommendations [Bos et al. 2009; Alliance 2006] the layout presentation can be de-
fined. Doing this the CSS definition is be performed using the id attribute values or
defining a class attribute. To define CSS attribute value, the application property
file can also be used. However, the property file is just used to declare the binding
between the elements and the attribute values. The final layout definition in CSS is
up to the developer.

5.2.2.2 UI update Strategy

Since Ajax is used to support the Client-Server interaction (cp. 2.6) with asyn-
chronous and partial refreshes of the application, an update strategy should be de-
veloped to contend the UI issues. The UI update strategy is elaborated according

31

5 User Interfaces Specification

to the UI functionality specification defined in section 5.1. Having the functionality
specification defined, an overview of the states of the application is done. After the
application states are defined the developer can choose how the application will be
updated. Furthermore, having the overview, he can decide whether a full or partial
application update is required.
For example, according to our prototype, the first state consist of the application af-
ter the first client request. Another state can be the one after the user clicked on the
play button. So the transition from the first request to the playing mode is labeled by
an play event. In the playing state the image associated with the play button and the
value of the end time node should be changed. Interactively the value of the starting
time node should also be changed according to the playing progress. Therefore, we
provide an abstract Output element with content type JSScript. As a content value
instruct the CSS and the JavaScript to change the visual appearance, to instantiate
an elapse time counter and to update the end time value.

5.3 Conclusion

The UI specification encompasses the definition of the UI functionalities, presenta-
tion logic and an UI model. To specify the application logic we chose to specify the
domain logic after the UIFS method presented in Kawash [2004]. If presentation is-
sues occur, the developer should use the W3C or the OMA style guidelines. Finally
the way the application will be updated is up to the developer. Then the appro-
priate update strategy depends on the application issues. For more information on
the design strategies using Ajax architecture, a large overview is presented in Ort
and Basler [2006]. Thereby all advantages and disadvantages of each method are
explained.

32

6 Language for Abstract user Interface

Modeling (LAIM)

To handle different end-user preferences and different computing platforms where
the UI application contexts become important, SUIs come in use. They facilitate an
extensive reuse of UI components. Herein a separation between the application logic
from its visual presentation and also from the UI requirements is guaranteed. SUI
can also be used to allow UI interoperation which increases productivity, while the UI
components are shared between many applications as in the Microsoft office packet.
Due to the numerous advantages of the SUI, we generate dynamically an adapted
UI based on a Semantic User Interface (SUI) [Tilly et al. 2007] description [Tilly
et al. 2007]. For this purpose LAIM was build. In order to build a powerful model
which fulfills the user’s and the developer’s requirements, the approach mentioned
in Ludewig [2003] was taken into consideration.

6.1 LAIM Specification

LAIM [Bihler et al. 2008] is a very basic SUID language. It consists of four main
elements and was designed after the principle of the design pattern named composite
pattern [Freeman et al.] (cp. figure 6.1). The component interface mapped as an
UIElement contains the definition of the required UI attribute elements, which are
contained in all other Elements. Based on the semantics of the visual UI components,
the LAIM elements can be described as follows:

Input Control element associated with an Input Data Type. Since LAIM is an ab-
stract SUI, if the Force Default attribute was not defined, this would allow
users to input text or to choose among several default choices. Thereby the
restricted number of possible selectable values are specified with the Min and
Max selection attributes (cp. listing 6.3).

Output Defines an output of any kind, depending on the content and the content
type of the current component, such as the context information. This UI com-
ponent is not associated with a control element (cp. listing 6.2).

33

6 Language for Abstract user Interface Modeling (LAIM)

Action Another control element, wherewith users directly interact with the appli-
cation. It allows triggering of program functionalities and can be visualized as
menus, buttons, or as an object control.

Group Container for other leaf elements and mapped as the composite. The leaf ele-
ments (Output, Input and Action) representing the real UI elements can be set
into a context. This might help the transformation engine to structure the ren-
dered UI and decide upon the proper visualization of the elements within the
group. Enhancing the transformation engine with logic data based on the tar-
geted platform, the running environment and context informations, the group
element can also serve to group many UI components from the same type into
a single UI component.

This is similar to the model definition presented in [Kawash 2004, p. 2]. In this model,
the Input element is also used to collect the user’s input. The Output element is used
for content presentation. The Controls defined here as Action elements are used to
initiate a user event and to control the interaction between the user and the interface.
The classic software life-cycle models usually consist of many activities [Nutt 1995]. In
the requirement analysis and specification step, an XML document (cp. figure 6.2)
can be used to capture the UI description. Therefore, the UI description is built
according to the meta model specification, which on its own is built using the XML
schema specification [Gao et al. 2009] (cp. figure 6.2). During the runtime the defined
UI representation is translated into an object-oriented model. In favor of the model
description the UI is optionally extendable. To generate the adaptable UI the object-
oriented model is translated into logical Prolog facts. These facts are used to create
the UI using CTs.

6.2 LAIM - Attribute Semantics

The LAIM model allows the specification of common attributes found in all UI
components, and on the other hand -the specification of specific UI attributes.

6.2.1 Semantic of common UI Attributes

Referring to the program artifacts, each UI element owns an id, which is the UID
for each UI component with its caption translated as labels in order to visualize
it. Depending of the UI Requirements, UI components can be set to enabled or
disabled (cp. listing 6.1). As defined in Giannetti [2002], to guarantee the content

34

6.2 LAIM - Attribute Semantics

selection depending of the context of use, the priority attribute was provided. It is
an optional attribute, which can be defined for each UI component. In the object-
oriented view of the abstract model, this attribute is automatically inherited from
the superclass, when the priority definition is not contained in the subclasses.

6.2.2 Semantic of specific UI Attributes

To fulfill the UI requirement the LAIM specification 6.1 allows the definition of spe-
cific UI attributes. These attributes are specified with their expected attribute types.
Since an object-oriented view of the model was adopted, the valid data types are the
same as in the Java world. Nevertheless, a collection in LAIM can be interpreted as
list of String in the object-oriented model. For instance, the LAIM - Input defines an
Input Data Type attribute of type String. Then, the Default Values are syntactically
restricted to a set of Strings.
In this work the target domain differs from the source domain. So the required Data
Types also differ from the Data type usually used in an object-oriented system.
E. g. in order to print out an image in XHTML, the image location is required.
When implementing with Java the source location is also required, but the internal
representation is done with a Buffered Image. Semantically an image is viewed as a
content in the target domain. For this purpose LAIM allows the specification of an
Output UI Element with Content Type image. Defining an Output UI from type im-
age, the content attribute must refer to the location where the output can be found
(cp. figure 6.2). The Output caption can be interpreted in this way as the alternative
text attribute value of the image tag in the output model such as XHTML.

35

6 Language for Abstract user Interface Modeling (LAIM)

Figure 6.1: LAIM Architecture: The elements used to represent a user interface se-
mantically in LAIM

Figure 6.2: XML representation of a LAIM sample, thereby the XML Schema is
located on the file system in LAIM-Schema-lite.xsd

Listing 6.1: UIElement Attributes Schema
1 <!ELEMENT UIELEMENT −− (AUIType) −− >
2 <!ATTLIST UIELEMENT
3 id %id; #REQUIRED −− client/server− UID component identifier −−
4 caption CDATA #OPTINAL −− label used to view the UI element −−
5 enabled %boolean; #OPTINAL −− set the element as enabled or hidden −−
6 semantic CDATA #OPTINAL −− semantic, depending from the UI application context −−
7 priority CDATA #OPTINAL −− priority, used to specify the UI component selection −−
8 >

36

6.3 Conclusion

Listing 6.2: LAIM Output Attributes Schema
1 <!ELEMENT OUTPUT −− (AUIType) −− >
2 <!ATTLIST OUTPUT
3 contentType CDATA #OPTINAL −− specifier the content type −−
4 content CDATA #OPTINAL −− content shawn on the UI −−
5 >

Listing 6.3: LAIM Input Attributes Schema
1 <!ELEMENT INPUT −− (AUIType) −− >
2 <!ATTLIST INPUT
3 inputDataType CDATA #OPTINAL −− specifier the input data type −−
4 defaultValues %Collection #OPTINAL −− initial values −−
5 forceDefault %boolean; #OPTINAL −− user input is allow or not−−
6 minSelection CDATA #OPTINAL −− how many default values are to choose −−
7 maxSelection CDATA #OPTINAL −− max initial values to choose −−
8 selectedValue CDATA #OPTINAL −− set the pre−selected value −−
9 >

6.3 Conclusion

To handle different end-user preferences and different computing platforms LAIM
was specified. As a representation of the real world, this model must meet three
criteria according to Stachowiak [1973]; Ludewig [2003]:

Mapping criterion There is an original object or phenomenon that is mapped to the
model. In the sequel, this original object or phenomenon is referred to as "the
original".

Reduction criterion Not all the properties of the original are mapped onto the
model, but the model is somewhat reduced. On the other hand, the model
must mirror at least some properties of the original.

Pragmatic criterion: The model can replace the original for some purpose, i.e. the
model is useful.

Firstly, LAIM is used abstractly as the representation of the presentation domain.
The final presentation depends on the platform on which the application is executed.
The final application is built using the model specification and acts as an abstraction
of the real world. Even if the created model reflects only the fantasy of the author,
LAIM offers the specification of the fictitious model. So the mapping criterion is
satisfied.
To define a model, LAIM provides the definition of a component class hierarchy 6.1.

37

6 Language for Abstract user Interface Modeling (LAIM)

Each component of this hierarchy contains common UI Attributes such as specific
UI Attributes. To build the final model, which is in fact the original model, the
abstract model interpretation is up to the developer. Since the abstract model is
not a one-to-one mapping of the original model, the semantics of each component
and its attributes becomes important. Consequently the reduction criterion is also
satisfied.
During the development process many UI requirements are to be taken into account.
Among others, different end-user preferences and different runtime platforms are to
be taken into consideration. On the other hand, usability and code reuse play a
significant role. So it is not possible to create different compatible models for each
platform to guarantee a good user experience. For this purpose the created model can
replace the original. According to Ludewig [2003] the pragmatic criterion comes
true.
In conclusion LAIM is assumed to be a model, as the LAIM specification serves as
model specification to define an abstract part of the real world.

38

7 Transformation Rules Definition

According to the model transformation definition seen in section 4, transformation
definition or transformation rules have to be defined in order to translate the source
model into the target model. To execute this correctly, the transformation rules
have to fulfill some requirements. This section is devoted to the definition of rules
requirements and demonstrates how the formulated rules are constructed and used
to translate the source model.

7.1 Rules Requirements

During the work we discovered that the structure of the abstract model definition
(LAIM) can be represented with FSMs. By using such an abstraction, the transfor-
mation rules can be formulated in a simple way. To guarantee a flexible application
development, the transformation Rules should be:

Business related The specification should only pertain to the business logic.

Granular Should be suitably coarse-granular.

Composable The composition of the rules should be interpretable.

Context free As few assumptions as possible on the output data type.

In Engels et al. [2008], the above rules are used to design the interfaces and the
operations in a SOA. In our case, we use these requirements to build the transfor-
mations definition in a way, such that the rules are coarse-granular, composable and
context-free, so that the result of the transformation process is business related.
In section 4.3, we presented how the transformation definitions are built using CTs.
Thereby, we observe how to build coarse-granular CTs rules and how to build com-
plex transformation rules using CT Sequences. As CTs rules are built in a generic
way, they can be assumed to be context free. Finally, according to the author, we
demonstrated by constructing a prototype in section 8 how business related results
are obtained. Doing this, the UI requirements, such as the delivery context were
taken into consideration.

39

7 Transformation Rules Definition

7.2 Transformation Definitions

LAIM was specified in section 6. As LAIM is a very abstract SUI used to define the
model, the semantics of the attributes nodes plays a significant role during the model
transformations. In this section we will explain a possible semantics interpretation
of the attribute nodes.

7.2.1 LAIM-Group Transformation

The target language profiles (e. g. XHTML) propose numerous presentations, and
layout constructs (table, list, checkbox etc.), which are not defined in LAIM. Since
LAIM is only used to describe the presentation in an abstract way, there is no
possibility to decide a priori which output element was described. To determine
which UI element was intentionally described, the semantics of the elements should
be examined. In this way, it should be possible to generate complex output UI element
like a table, a menu structure or even XForms [Boyer 2009] components. In order to
solve this problem, the author can add semantic information into the transformation
rules as follows:

Position The position of the LAIM Group node according to the root node (cp.
figure 7.1 and 7.3).

Type of children The author can add instructions to check if the children of the
Group node are of the same type (e. g. Action or Output cp. figure 7.2 and 7.3).

Siblings In the same way, the transformation engine can check if the Group node
belongs to a group of group nodes, whereby the type of children of the siblings
is also taken into consideration.

Priority The priority, which is a LAIM-Group attribute, is used to determine,
whether the Group node and its children node is to be translated or not.

For instance, to generate a XForms component the UI description can be done as
seen on figure 7.1. Since XForms are composed of a model (model definition, behav-
ior, and contains) and user interface (input fields definition and how to display the
form element), LAIM can be used to describe the UI. The model definition can be
generated and combined with the UI during the transformation process.

40

7.2 Transformation Definitions

O
ut

pu
t

T
ra

ns
fo

rm
at

io
n

LA
IM

HTML Form

Figure 7.1: Description of a LAIM-Group containing different element types. Accord-
ing to this description the output can be an XForms component. The
transformation result is related to the semantics of the LAIM-Group ele-
ment. The other described UI components are also transformed according
to their semantics description.

41

7 Transformation Rules Definition

LA
IM

O

ut
pu

t
T

ra
ns

fo
rm

at
io

n

Form
ated H

TML List

Figure 7.2: Transformation of a LAIM group node with the referring action node
into a list container.

7.2.2 LAIM-Action , -Output Transformation

In the same way, the author can also add semantics information on the LAIM-Action
and -Output transformation rules. Thus, the LAIM-Action or -Output transforma-
tion depends on the:

Siblings To generate a list of elements, the author can add transformation instruc-
tions into the transformation rules according to the siblings of the transformed
element. Doing this, he can check whether all siblings contained in a group
node are of the same type (cp. figure 7.2).

7.2.3 LAIM-Input Transformation

The LAIM input transformation is done after the LAIM-Input specification such as
the semantics of its attributes (cp. section 6.2). For example, figure 7.3 shows a possi-

42

7.3 Conclusion

O
ut

pu
t

T
ra

ns
fo

rm
at

io
n

LA
IM

No default values

1 default value,
default not required

3 default values
only default values allowed

1 default value
only default value allowed

0 or 1 required

2 default values
only default values allowed

several possible

2 default values
only default values allowed

only one selectable

Figure 7.3: Transformation of a LAIM group with the referring input nodes.

ble transformation of an Input UI element. The transformation definitions according
to the attribute semantics are also listed on the figure. Each rule is represented as a
CT (cp. figure4.3) and the composition is done via CT sequences.

7.3 Conclusion

In conclusion, the semantics of the described UI elements can be used to enrich the
transformations rules. Thus, it must be possible to generate specific presentation
constructs according to the presentation domain.
During the transformation process, to ensure the granularity of each rule, each arti-
fact is enclosed in one CT (cp. listing 7.1). Complex artifacts, which are related to
the presentation requirements, are interpreted using CT sequences (cp. listing 7.2).

43

7 Transformation Rules Definition

Listing 7.1: Condition Transformation of a LAIM group node element
1 /∗∗
2 ∗ ct(translateLaimGroupWithDepthOne(+Id,+Depth)) is det.
3 ∗ choose via pattern matching to translate the laim group node
4 ∗ with depth one, into the corresponding intermediate node
5 ∗∗/
6 ct(translateLaimGroupWithDepthOne(Id,1),
7 condition((
8 %find the element with the corresponding Id
9 laimGroup(Id,ParentId,ChildIdList),

10 laimGroup(ParentId,root,_),
11 %function to translate the children ids into new id list
12 laimNodeTranslator:jsGenerateIdList(Id,NewChildIdList,ChildIdList,0,’’),
13 % translate laim group id into new id
14 transform_id(’js’ , Id, NewId),
15 transform_id(’js’ , ParentId, NewParentId),
16 %tag to enclose the children elements during the final translation step
17 (laimElementTag(Id,DefineTag) −> Tag = DefineTag; Tag = ’div’)
18)) ,
19 transformation((
20 add(htmlNode(NewId,NewParentId,NewChildIdList,Tag))
21))
22) .

Listing 7.2: Conditional Transformation Sequence
1 /∗∗
2 ∗ translateLaimSemanticAndEnabledNodeForLaimGroupRoot(+ID) is det!
3 ∗ CTSeq to translate the referring LAIM Group node Semantic, Enabled and Caption
4 ∗∗/
5 ctseq(translateLaimSemanticAndEnabledAndCaptionNode(Id),
6 orseq(
7 ct(translateLaimNodeSemantic(Id)),
8 orseq(
9 ct(translateLaimNodeEnabled(Id)),

10 ct(translateLaimNodeCaption(Id))
11)
12)
13) .

44

8 Implementation Details

The implementation consists of several stages. The first one is the design of a conform
LAIM UI sample called Model (cp. figure 6.2) specified in section 6. According to
the interaction architecture (cp. section 2.6) the second step checks which logic
procedure will be executed on the client. Afterwards the model has to be refined.
The last step consist of the real implementation on the server side.

8.1 Model Definition

In the requirement analysis and specification phases the model is created. To ensure
that the application will be delivered upon the user requirements, it is recommended
to use the user-centered design (UCD) approach [Visciola 2003; Vredenburg 2008].
Thereby the focus is put on the users, their tasks, and the context in which the
application is used. In order to ensure the usability and a good user experience,
Degler [2006] proposes to divide the target audience into groups, then usability can
only be defined for a specific group of users and context. In an UCD project there
are four main activities [Kirakowski and Collins 1999; ISO13407 1999]:

Requirement gathering Specify the context of use.

Requirement specification Specify the user and organizational requirements.

Design Produce design solutions.

Evaluation Evaluate designs against user requirements.

The outlined activities can also serve as a process to define the model. As the fi-
nal model is an abstract model, the evaluation takes place only after the model
transformation. During the requirement gathering and specification the basis model
is designed (Figure 6.2 shows the representation of a basis model in XML format).
Since many contexts of use have to be supported, the priority attribute must serve as
content selection. Towards the model design in XML format, the model is translated
into an object-oriented one (cp. figure 6.1).

45

8 Implementation Details

Figure 8.1: Standard Ajax web application model.

8.2 Client Side

To guarantee a great user experience an Ajax Web application model (cp. sec-
tion 2.6) is used. Figure 8.1 shows a common Ajax web application model [Gar-
rett; Wei]. To build such an architecture the control elements must be provided
with JavaScript function calls. For instance, by implementing the prototype we
choose the function clicked(elementId) as a general function for all control ele-
ments of type button. For all Output UI components, which were translated into
control elements, we choose the function named outputChanged(elementId) or also
player_media(content, elementId). For example see listing 8.1. Thereby the elementId

is the id of the triggered element. As a prototype, we choose to build a music ap-
plication. Doing this, the real music player, which resides on the client needs to be
initialized with the needed content before the client feedback is sent to the server.
For this purpose we choose to embed the JavaScript code with the method call
player_media(content, elementId).

Listing 8.1: Embedded JavaScript function in XHTML code.
1 <div id="js_play_i">
2 <input type="button" id="js_play" name="js_play" value="play" ONCLICK="clicked(’

js_play’);"/>
3 </div>
4 <div id="js_song_list_0">
5 <a id="js_song_list_0_1"
6 href="javascript:void player_media(’/RenderTest/musics/101 Beyonce − If I Were A Boy.

mp3’,’js_song_list_0_1’);"

46

8.3 Server Side

7 class="songs">Beyonce − I’am Sasha Pierce ... − If I Were A Boy
8 </div>

To send the feedback to the server, we provide a XMLHttpRequest Object (cp. list-
ing 8.2), which is initiated and processed from the client. The Feedback is composed
of three major parameters:

Action: Denoted an ONCLICK or an ONCHANGE event.

Id: Component UID.

Url: The active content.

The Component UID is the only required element, because the application resides
completely on the server and without the Id, there is no way to find out which
component was activated.
After the requirements on the client side were specified, the model can be refined. In
the next step, the proper implementation can begin.

Listing 8.2: The XMLHttpRequest Object used for Client-Server Interaction.
1 /∗∗
2 ∗ http://www.prototypejs.org/api/ajax/request
3 ∗ ’/RenderTest/HelloWorld’ entry point location on the Server,
4 ∗ this location is also the Servlet URL.
5 ∗∗/
6 new Ajax.Request(’/RenderTest/HelloWorld’, {
7 method: ’post’,
8 parameters: {
9 action: action,

10 id: elementId,
11 url: currentURL
12 }
13 });

8.3 Server Side

Referring to the proposed architecture, the device connects to an application server,
in the case of this work prototype this might be an instance of Apache Tomcat. A
Java Servlet acts as an entry point and interface to the Java-based Web application.
This Servlet monitors the client Request/Response and differs between two HTTP
Request methods:

47

8 Implementation Details

Get Method: Used by the first application call, to request a representation of the
application. In the process, according to the UI requirement, the application is
instantiated, the predefined model is loaded and translated, and the trans-
lated UI is sent to the client without any side effects. As a content type,
text/html; charset = UTF − 8 is attached to the response.

Post method: Used to submit data included in the body of the request to be pro-
cessed to the Java Servlet resource. This method is sent from the XMLHttpRe-
quest object (cp. listing 8.2) by any other client requests. The side effect
is the client-side partial presentation update. This occurs via the instruction
application/javascript; charset = UTF −8, which brings the client to execute
the response code.

Ajax allows developers to update parts of the application without needing to refresh
the whole application. This is done using an asynchronous HTTP call back to the
server and client-side JavaScript to update specific parts of the application. For
instance, by clicking on a control element, its Id is sent as a parameter to server.
According to this Id, there are two application update strategies:

Component update: Usually defined using < div id = ”elementId” > tags. Only
the required part of the abstract model is transformed and sent back to the
client.

UI update: The entire application is modified or updated according to the context
of use, the user and UI requirements.

When it comes to UI visualization, the application hands over a semantical descrip-
tion of the required inputs, outputs, and actions to the rendering system. A handling
chain based on the Conditional Transformation Core processes the abstract input and
arranges a concrete UI representation based on rules persisted in a Prolog database
(cp. section 7.1).

8.4 Transformation Chain

The transformation is composed of several steps (cp. figure 8.2). The first one is
the definition of a SUI according to section 8.1 and 6.1. Upon SUID, the model is
translated into SUID facts. As the delivery context [Tran 2002] is also part of the
requirements, the context data must be collected and included in the Prolog fact
base.

48

8.4 Transformation Chain

FF
FD

FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD

FF
FD

FF
FD

FF
FD

FF
FD
FF
FD

FF
FD
FF
FD

FF
FD

FF
FD

FF
FD

FF
FD
FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD
FF
FD

FF
FD

FF
FD

FF
FD
FF
FD

FF
FD
FF
FD

FF
FD
FF
FD
FF
FD

FF
FD
FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD

FF
FD

FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD
FF
FD
FF
FD

FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD
FF
FD

FF
FD

FF
FD

FF
FD

FF
FD

FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD

FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD

FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD

FF
FD
FF
FD

FF
FD
FF
FD

FF
FD

FF
FD
FF
FD
FF
FD

FF
FD

FF
FD
FF
FD
FF
FD

FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD

FF
FD

FF
FD
FF
FD

FF
FD
FF
FD
FF
FD

FF
FD

FF
FD

FF
FD
FF
FD

FF
FD
FF
FD

FF
FD

FF
FD
FF
FD
FF
FD

FF
FD

FF
FD

FF
FD
FF
FD
FF
FD
FF
FD
FF
FD
FF
FD

FF
FD
FF
FD

Semantic
User Interface

Definitions
(SUIDs)

Translation to
SUID facts

Transformation
of facts

using CTs

Translation from target facts to
concrete representation

UI in web-compatible
description

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns = "http://www.w3.org/1999/xhtml" xml:lang = "en" lang = "en">
 <head>
 <title> UI - Sample </title>
 </head>
 <body id="__root">
 <div id="js_mail_listing_1" >
 <div id="js_mail_listing_1_1" >Mails:</div>
 <div id="js_mail_listing_1_1_1" >
 <label for="js_mail_listing_1_l"> Apples </label>
 <input type="button" name="js_mail_listing_1_i" id="js_mail_listing_1_i" value="Apples" checked="checked" />
 </div>
 <div id ="js_mail_listing_1_2_1"> ...</div>
 </body>
</html>

Figure 8.2: A detailed view of the LAIM transformation chain.

49

8 Implementation Details

8.4.1 Delivery Context Detection

The user preference [Wagner and Paolucci] and the context of use, such as the UI
requirements, can also be translated into facts and included into the user module
(cp. 4.1.4). To detect the delivery context, we used the WURFL framework pre-
sented in section 3.1. Doing this we extracted information such as the supported
markup language and so on. The supported markup is used for example as in-
put variable to parse the application property file. The extracted information is
parsed and included into the fact base, which contains the LAIM model translated
into Prolog facts. For instance, facts like laimUICapabilities(mp3,’true’). and
laimElementTag(volume_group,’div’). are added. Thereby true means that the
mp3 sound format is supported, and the related node tag of the element with id

volume_group will be a div tag.

8.4.2 Meta-Model Definitions

The transformation chain includes two transformation steps: The transformation
into SUI facts and Intermediate facts. For each of these transformation steps, a meta
model has to be defined.

8.4.2.1 SUI Meta-Model Definition

In order to transform the abstract LAIM model specified in section 6, the LAIM meta
model needs to be expressed using the gAST specification (cp. section 4.2.1). The
meta model is used to describe the internal structure of each LAIM model facts,
which fulfill the meta model specification. The meta model specification consists of
node facts (cp. section 4.2.1.1), and relation facts (cp. section 4.2.1.2). For instance,
listing 4.4 shows a possible definition of the node fact according to the LAIM-Input
element definition. During the LAIM specification the attribute’s element was clas-
sified in two groups: common and specific. This distinction is only for a specification
purpose and will not be considered anymore. However, by the meta model definition
all attributes are translated as relation facts. Listing 4.5 shows the definition of rela-
tion facts according to the LAIM-Input element. Any other relations are be defined
after the same principle.

50

8.4 Transformation Chain

8.4.2.2 Intermediate Meta-Model Definitions

Due to the platform and the target model (e. g. XHTML, XHTML-MP, WML, WAP,
etc.) diversity, the transformation process was split into four steps:

1. Model definition.

2. Translation of the defined model into Prolog facts called intermediate facts.

3. Transformation of the intermediate facts using CTs into the target model spe-
cific facts.

4. Translation of the target model specific facts into a specific presentation do-
main.

Referring to the transformation chain (cp. figure 8.2) the last step consist in trans-
lating the CT output into the presentation domain. Beforehand, according to the
Prolog process model, the CT output model needs to be conformed to a meta model.
This meta model is called intermediate model and is related to the final presentation
domain. Hence, to define the meta model, the presentation requirements are to be
specified. For instance, to print an input element according to the presentation using
XHTML syntax (cp. listing 8.3), the input caption is sometimes enclosed between
the label tag. Depending on the input type, some attributes (id, name, value, etc)
are required, some others (checked="checked", class, etc.) are not required. Depend-
ing on this syntax, the meta model definition is made. All other node and relation
facts are defined after the same principle or convention. A representation of clauses
depending to such meta model definition is illustrated in listing 8.6

51

8 Implementation Details

Listing 8.3: Input element according to the XHTML presentation requirements
1 <label for="js_song_list_1">
2 Beyonce − If I Were A Boy
3 </label>
4 <input type="radio" id="js_song_list_1" name="song_list_name"
5 value="Beyonce − If I Were A Boy" checked="checked"
6 ONCLICK="clicked(’js_song_list_1’);"/>

Listing 8.4: Intermediate meta model definition principle.
1 /∗
2 ∗ node fact definition
3 ∗∗/
4 ast_node_def(’Intermediate’,jsInput,[
5 ast_arg(id, mult(1,1,no), id , [jsInput]) ,
6 ast_arg(parent, mult(0,1,no), id , [id])
7]) .
8

9 /∗
10 ∗ relation fact definition
11 ∗∗/
12 ast_relation(’ Intermediate’,jsInputType,[
13 ast_arg(id, mult(1,1,no), id , [jsInput]) ,
14 ast_arg(inputType, mult(1,1,no), attr , [atom])
15]) .
16

17 ast_relation(’ Intermediate’,jsInputName,[
18 ast_arg(id, mult(1,1,no), id , [jsInput]) ,
19 ast_arg(inputName, mult(1,1,no), attr , [atom])
20]) .
21

22 ast_relation(’ Intermediate’,jsInputValue,[
23 ast_arg(id, mult(1,1,no), id , [jsInput]) ,
24 ast_arg(inputValue, mult(1,1,no), attr , [atom])
25]) .
26

27 ast_relation(’ Intermediate’,jsInputChecked,[
28 ast_arg(id, mult(1,1,no), id , [jsInput]) ,
29 ast_arg(inputChecked, mult(1,1,no), attr , [atom])
30]) .

52

8.4 Transformation Chain

8.4.3 Transformation into SUI Facts

After the meta predicates are defined, the model can be translated into SUI predicates
(cp. listing 8.5). The first predicate is the node fact. All other predicates are relation
facts and denote the relation to the LAIM-Input node fact.

Listing 8.5: LAIM-Input predicates translated after the user requirements.
1 /∗∗
2 ∗ LAIM−Input predicates
3 ∗∗/
4 laimInput(song_list,songs).
5 laimCaption(song_list,’Songs:’) .
6 laimSemantic(song_list,’’) .
7 laimEnabled(song_list).
8 laimPriority(song_list,250) .
9 laimForceDefault(song_list).

10 laimMinSelection(song_list,1).
11 laimMaxSelection(song_list,1).
12 laimDefaultValues(song_list,[’Beyonce − If I Were A Boy’,’Beyonce − Halo’,
13 ’Beyonce − Disappear’,’Beyonce − Broken−Hearted Girl’]).

8.4.4 Transformation using CTs

In a further step CTs are used to translate facts into intermediate facts (cp. list-
ing 8.6). According to the transformation definition (cp. figure 7.3) each transforma-
tion’s artifacts are enclosed in a CT. The composition of these rules are made using
CT sequences. For Instance to encapsulate the transformation sequence a PROPSEQ
4.3 is used (cp. listing 8.6).

53

8 Implementation Details

Listing 8.6: Intermediates Prolog facts related to the presentation domain
1 jsInput(js_song_list_1, js_song_list).
2 jsInput(js_song_list_2, js_song_list).
3 jsInput(js_song_list_3, js_song_list).
4 jsInput(js_song_list_4, js_song_list).
5

6 htmlNode(js_song_list, js_songs, [js_song_list_1, js_song_list_2, js_song_list_3,
js_song_list_4], div).

7

8 jsInputType(js_song_list_1, radio).
9 jsInputType(js_song_list_2, radio).

10 jsInputType(js_song_list_3, radio).
11 jsInputType(js_song_list_4, radio).
12

13 jsInputName(js_song_list_1, song_list_name).
14 jsInputName(js_song_list_2, song_list_name).
15 jsInputName(js_song_list_3, song_list_name).
16 jsInputName(js_song_list_4, song_list_name).
17

18 jsInputValue(js_song_list_1, ’Beyonce − If I Were A Boy’).
19 jsInputValue(js_song_list_2, ’Beyonce − Halo’).
20 jsInputValue(js_song_list_3, ’Beyonce − Disappear’).
21 jsInputValue(js_song_list_4, ’Beyonce − Broken−Hearted Girl’).
22

23 jsInputChecked(js_song_list_1, ’ checked="checked" ’).
24 jsInputChecked(js_song_list_2, ’’).
25 jsInputChecked(js_song_list_3, ’’).
26 jsInputChecked(js_song_list_4, ’’).
27

28 jsCaption(js_song_list_1, ’Beyonce − If I Were A Boy’).
29 jsCaption(js_song_list_2, ’Beyonce − Halo’).
30 jsCaption(js_song_list_3, ’Beyonce − Disappear’).
31 jsCaption(js_song_list_4, ’Beyonce − Broken−Hearted Girl’).

54

8.4 Transformation Chain

At first the processor checks if the Input component is needed. If not, no transfor-
mation will be done, and the whole input transformation process will be skipped.
Neither the node fact nor the relation facts of this node fact will be transformed. If
an element needed to be translated, the fact is stored in the priority element, which
is semantically defined as the content selection attribute. An example of that is the
case when the element priority is smaller than a given value. In listing 8.7 the first
CT is used to check the element priority. During the translation process, we have
also differentiated between how many default values were listed. It is essential, to
ensure a good transformation. Since LAIM is an abstract model definition, the input
element is used to describe any kind of input control related to the presentation
domain. As the semantics of the described elements plays a significant role, this is
the only way to provide a good transformation process. However, the second CT is
used to detect initially if some default values are given. After the number of default
values is determined, the input node is translated. In addition, the last CT of the
listing is used to translate the default values depending of the transformation rules
(cp. figure 7.3). In order to transform the other relation facts, another CT sequence
comes in use. This sequence is built in almost the same manner as the sequence
presented in listing 8.7. The final result of this transformation step, according from
the predicates listed on listing 8.5 are demonstrated on listing 8.6.

Listing 8.7: CT sequence transformation example.

1 /∗
2 ∗ At first check if the element is needed −>
3 ∗ ct(checkElementPriority(+Id,?Result)). the result is stored
4 ∗ in Result as fail or true. If the result is true, then the element
5 ∗ is needed and the node fact, such as the relation facts will be
6 ∗ translated . During the translation we also differentiated between how many
7 ∗ default values are listed . It is essential in order to ensure a
8 ∗ good transformation.
9 ∗∗/

10 ctseq(translateLaimInputNode(Id,Result),
11 propseq(
12 ct(checkElementPriority(Id,Result)),
13 orseq(
14 ct(translatelaimInputwithNoDefaultValueOrWithOneDefaultValue(Id,Length,

NewChildIdList, Result)),
15 ct(generateFactsForEachDefaultValues(Id,Length,NewChildIdList, Result))
16)
17)
18) .

55

8 Implementation Details

The output of the transformation step presented below is used to create the final
presentation. As defined in section 8.4.2.2 the created facts should fulfill the inter-
mediate model specification. The transformation allocation in a a couple of steps
(cp. section 8.4.2.2) has the advantage of code reuse. Then it is up to the developer
to create the model in which the presentation will be done, this according to the
WORA principle (cp. section 2).

8.4.5 Transformation into the Presentation Domain

In the last transformation step, the intermediate model is translated into the pre-
sentation domain. To guarantee a good user experience some principles like the One
Web Principle (OWP) should be ensured. For this, the presentation logic was define
in section 5.2. To define element tag according to the presentation domain, the de-
veloper can define an application property file and override the default application
properties. For instance the default element tag for a group node is defined as a
div tag. The group node can be redefined as a block for the output in VoiceXML
[Oshry et al. 2007] in the property file. To override the common tag nodes, it is also
possible to define a tag nodes for each Ids. To provide the element’s tag definition
according to the target domain variations, the classification can be done by splitting
the file into sections beginning with the markup instructions like #BEGIN LANG =

XHTML_ADVANCED and #END LANG = XHTML_ADVANCED, or define a configuration file
for each targeted domain. Thereby XHTML_ADVANCED is one of the device markup
language extracted by querying the WURFL. This instruction denotes that the in-
tegrated browser supports HTML, such as the W3C XHTML standards.
After the tag nodes are defined, the developer can proceed with the CSS definition.
The application property file can also be used to declare the CSS class values, by
binding the element id with the attribute or the class value. During the model trans-
formation the class value is queried and outputed as a value of the class attribute.
For example listing 8.8 demonstrates the intermediate facts translation into the pre-
sentation model. Thereby, the UI element is created according to the declared node
attributes and the attribute value is declared in the application property file. Since
the application provides a way to define node tags for different target languages, a
model according to each syntax can be automatically generated on demand.

Listing 8.8: Translation in the output model depending on the presentation domain.
1 jsDivVisitor(Parent,before,Id, _Node,DefferedJsCommandsIn,DefferedJsCommandsOut,

OutputStream) :−
2 htmlNode(Id, Parent, _ChildIdList, TagNode),
3 (%check if the html node is refferencing some attribute with value

56

8.4 Transformation Chain

4 (htmlNodeAttibute(Id, Attibute),not(Attibute=’’)),
5 (htmlNodeAttributeValue(Id, AttValue);AttValue=’’) −>
6 format(atom(AttWithValue),’~a="~a"’,[Attibute,AttValue]);
7 AttWithValue=’’
8),%write the html node with the given tag and the reffering attribute with value
9 (

10 htmlNodeCSSClassAttibute(Id,Class,ClassValue) −>
11 format(atom(CSS),’~a="~a"’,[Class,ClassValue]);
12 CSS=’’
13) ,
14 format(atom(FormatString),’<~a id="~a" ~a ~a>’,[TagNode,Id,AttWithValue,CSS]).

8.4.5.1 Translation into the target Domain

In the last transformation step, an output writer, created using Prolog, is used
to translate the result of the CTs transformation process into the output model.
Thereby, the predicates are translated according to UI requirement, the delivery con-
text and also to the client server interaction requirements described in section 2.5.
For example, listing 8.9 shows the transformation rule, used to translate the predi-
cates, resulting from the CTs transformation step (cp. 8.6). The produced output is
similar to the output outlined in listing 8.1. Due to the hierarchical definition of the
components element in the presentation domain, the output writer is based on the
visitor pattern principle [Freeman et al.].

Listing 8.9: Predicates translation into the target domain.
1 /∗
2 ∗ jsVisitor (jsInput,before,+Id,_,_,_,+OutputStream).
3 ∗ output writer
4 ∗∗/
5 jsVisitor (jsInput,before,Id,_,_,_,OutputStream) :−
6 (jsCaption(Id, Caption);Caption=’’),
7 (jsInputType(Id, InputType);InputType=’text’), %get the input type
8 (jsInputName(Id, InputName);InputName=Id),%get the input name
9 (jsTagName(Id,TagName);TagName=’input’),%get the transformed tag name or write input as

the default one
10 (%check if some attribute with values was provided for this element and or write the default

one
11 (htmlNodeAttibutes(Id, Attibutes),length(Attibutes, Length1), not(Length1=0)),
12 (htmlNodeAttributeValues(Id, AttValues), length(AttValues, Length2), not(Length2=0))

−>
13 formatAttributeWithValues(Attibutes,AttValues,0,
14 Length1,_Result,_TmpResult,AttWithValue); %attribute and attribute values parser.
15 AttWithValue=’’

57

8 Implementation Details

16),%write the html node with the given tag and the reffering attribute with value
17 (%if the input type is radio
18 InputType = ’radio’ −>
19 format(atom(LabelwithCaption),’<label for="~a">~a</label>’,[Id,Caption]);
20 (%if the input type is checkbox
21 InputType = ’checkbox’ −>
22 format(atom(LabelwithCaption),’<label for="~a">~a</label>’,[Id,Caption]);
23 LabelwithCaption = Caption
24)
25) ,
26 (jsInputValue(Id, InputValue);InputValue=’’),
27 (jsInputChecked(Id, InputChecked);InputChecked=’’),
28 transform_id(Id, ’ i ’ , NewId),
29 format(atom(FormatString),
30 ’~a<~a type="~a" id="~a" name="~a" value="~a" ~a ONCLICK="clicked(’’~a’’);" ~a

/>’,
31 [LabelwithCaption,TagName,InputType,Id,InputName,InputValue,InputChecked,Id,

AttWithValue]),
32 %write the result onto the output stream
33 write(OutputStream,FormatString).

8.5 Object-Oriented Principle Simulation

During the development, transformation rules were defined (cp. section 7). According
to the CT programing model, to ensure the granularity of the rules, we enclose
each transformation artifact in one CT. To build complex transformation rules, CT
sequences are used. However it is not always possible to express an artifact using
only one CT. For instance, the focus is put on the LAIM-Group transformation (cp.
section 7.2.1). The LAIM-Group transformation can depend on the position (depth)
of the group element, such as the type of children element and the siblings of the
group element.
In an OO programing approach, the artifact about the position of the element can
be expressed using method overloading. Method overloading occurs when a class
contains more than one method with the same name, but a different signature. This
mechanism is provided from strong typed OOP programming languages. Which one
of these methods is used is resolved at compile time.
As in Prolog, the parameters of queries are not typed in CTs. Variable binding is
done using unification depending on the context in which it is used. To simulate the
method overloading mechanism, CT sequences also come in use. For example the Ct
sequence showed in listing 8.10 is used to simulate the overloading mechanism in

58

8.5 Object-Oriented Principle Simulation

CTs. The transformation sequence is used to encapsulate the transformation of the
laimGroup’s clause depending on the position of the group component. Therefore,
after the CT sequence head ctseq(translate...DepthTWO(Id,Depth)) is called,
the variables Id and Depth are unified and one of the outlined CTs is executed
according to the type of the children elements. To ensure that only one of the enclosed
CTs is executed, the condition tail of each CTs inspects the type of the children, and
the transformation is only executed if the type of children is the one, which was
estimated.

Listing 8.10: Method overloading simulation in CTs.
1 /∗
2 ∗ ctseq(translateLaimGroupWithDepthTWO(+Id,+Depth))
3 ∗ CT Sequence used to simulate the method overloading mechanism in CT
4 ∗ Translate translate LaimGroup with Depth equals 2
5 ∗∗/
6 ctseq(translateLaimGroupWithDepthTWO(Id,Depth),
7 orseq(
8 %children element are from different types
9 ct(translateLaimGroupWithDepthTWO(Id,Depth,false)),

10 %children element are from the same type
11 ct(translateLaimGroupWithDepthTWO(Id,Depth,true))
12)
13) .

59

9 Evaluation approach

9 Evaluation approach

During the development process and before the application was deployed, an evalu-
ation took place via two mechanisms: An automated validation based on the recom-
mendations of the W3C [W3C 2009] and a manual test or human revision J. et al.
[2008].

9.1 Testing

To ensure that the implemented application works properly on all devices, the verifi-
cation phase started by using emulators, on which an acceptance test was done after
each iteration of the development process. Here, the objective was just to demon-
strate that, according to the developer, a standard conform content was produced.
Using emulators, the evaluation allows a desktop testing without loading the appli-
cation on the device. However it is usually not sufficient to test on device emulators,
for emulators behave slightly different than real devices on a real network do. For
this reason, the device testing phase was done focusing on a few good mainstream
device classes [Wayner 2009]. Furthermore to evaluate the usability of our technique,
we compared it with the RIML development approach.

9.2 Comparison with the RIML Techniques

The RIML is based on existing standards. The document created using these stan-
dards is augmented with meta-information for the adaptation engines. The adapta-
tion uses context informations in addition to the semantics and syntax of meta data
to prepare the device-specific presentation.

9.2.1 RIML Document Definition

The document definition in RIML encompasses the content, the layout, the docu-
ment structure and the presentation definition (cp. listing 9.1). The layout enclosed

60

9.2 Comparison with the RIML Techniques

in the head tag is defined using layout container, such as column and row. By defin-
ing the layout the presentation properties can be defined using attribute tags. The
content definition is done in the body tag using XHTML markups. Using the frames
defined within the layout, the corresponding content is mapped. The RIML allows
the content pagination. Therefore the section element can be used. This represents
semantic hints for page splitting. Other semantic information like user preferences
and corresponding devices classes can also be added. To define the device classes, a
usability research from the user point of view was carried out. Thereafter, devices
with similar behavior were grouped into categories. Using the device classes the au-
thor can create different layouts for different device classes. The appropriate layout
is chosen at runtime depending on the delivery context.

61

9 Evaluation approach

Listing 9.1: Layout description with RIML.

1 <?xml version="1.0" encoding="UTF−8"?>
2 <html>
3 <head>
4 <riml:layout eccdc:deviceClassOneOf="DeviceClass1,DeviceClass2">
5 <riml:column riml:id="main−column1">
6 <riml:frame riml:id="navigation−frame" riml:paginate="false"/>
7 </riml:column>
8 </riml:layout>
9 <smil:switch>

10 <riml:layout eccdc:deviceClassOneOf="DeviceClass1,DeviceClass2">
11 <riml:column riml:id="main−column1" riml:minWidth="400">
12 <riml:frame riml:id="logoframe" riml:paginate="true"/>
13 </riml:column>
14 </riml:layout>
15 <riml:layout eccdc:deviceClassOneOf="DeviceClass3,DeviceClass4">
16 <riml:row riml:id="root−container">
17 <riml:column riml:id="CA">
18 <riml:frame riml:id="f1" riml:minWidth="40"/>
19 <riml:frame riml:id="f2" riml:minWidth="40"/>
20 </riml:column>
21 <riml:riml:frame riml:id="f3" riml:minWidth="50"/>
22 </riml:row>
23 </riml:layout>
24 </smil:switch>
25 </head>
26 <body>
27 <section riml:frameId="navigation−frame">
28 <riml:navigation>
29 <riml:navigation−links riml:scope="productframe" riml:links="previous"
30 riml: linksValue="relative−order"/>
31 <riml:navigation−links riml:scope="productframe" riml:links="next"
32 riml: linksValue="relative−order"/>
33 </riml:navigation>
34 </section>
35 <section riml:frameId="logoframe" eccdc:deviceClassOneOf="DeviceClass4">
36 <object data="images/jupiter_logo.jpg" type="image/jpg"/>
37 </section>
38 <section riml:frameId="logoframe" eccdc:deviceClassOneOf="DeviceClass1">
39 <p>Jupiter − Notebooks</p>
40 </section>
41 <section id="s1" riml:frameId="f1"><!−− section content −−></section>
42 <section id="s6" riml:frameId="f3"><!−− section content −−></section>
43 </body>
44 </html>

62

9.2 Comparison with the RIML Techniques

To provide interactive web applications, the RIML model permits form support based
on XForms to separate data definition from UI definition. XForms was designed to
be executed on a wide range of devices that might not be able to support a com-
plex and inconvenient JavaScript engine, including mobile phones. Many technologies
supporting the creation of XForms documents are presented in Dubinko [2009]. How-
ever, using XForms during the model definition leads to increased development efforts
[B’far 2004, pp. 351]. For instance, to generate WML from XForms the adaptation
engine needs to be able to translate XForms events into WMLScripts. The developer
also needs to ensure that the XHTML MIME type (application/xhtml+xml) is
supported.

9.2.2 LAIM Document Definition

A LAIM document is defined independently from user and domain point of view.
The model design is done focusing on the relevant domain aspects. From a domain
independent point of view, each UI is composed of an aggregation of three main
categories of UI elements:

Input Used to collect user inputs.

Controls or Action Elements Used to initiate user-events.

Outputs Used to output messages to the user.

Using these elements to define the interface, all domain specific presentation ele-
ments are excluded from the defined model. Since the target domain proposes many
syntactic elements with the same behavior, our framework proposes writing a con-
figuration file in which the expected element tags are defined. For instance, in order
output a caption, the author can choose to enclose it in a <div/> container or in a
 tag. In this way, if a tag is expected, this should be defined in the
configuration file. Otherwise the caption is printed using by default a <div/> tag.
Referring to the implementation details (cp. 8) all other information can be stored
in property files or even XML files.

9.2.3 RIML Adaptation Engine

The major adaption engine tasks encompass the receiving of a client’s request, the
recognition of the device type using the UAPROF technique, the content adaptation
according to the device properties, and the transformation of the adapted content into
the presentation domain. The adaptation engine itself is composed of two sections:

63

9 Evaluation approach

the semantic and syntactic adaptation. Thereby, the semantic adaptation represents
the adaptation of the content, depending of the device capabilities. The syntactic
adaptation is the adaptation according to the markup supported from the device
(WML, XHTML, VoiceXML). Since the RIML framework provides the definition of
optional and alternative contents, the appropriate one is selected during the semantic
adaptation process. During this step, the user’s request is analyzed. For example, the
analysis of the HTTP request determines whether a new page is requested, or if the
presented actual content should be rendered again. For the syntactic adaption the
author should provide different stylesheets for different target markup languages.

9.2.4 Prototype Engineering

As we have suggested in Section 8.1, the prototype is built after the UCD approach.
This is to ensure that the application will be delivered upon the user requirements.
Here, the information about the users, their tasks, and the context in which the
application will be used, was collected. In this way, a single device independent
description was developed. Doing this, we identified two contexts of use: The full
mode and the restricted mode. In the full mode, all UI components are available and
in the restricted mode, just a few of them are displayed 9.1. Therefore, the user’s
transparent adaptation is done on the server-side according to the priority of the
described elements and the device capabilities.

64

9.2 Comparison with the RIML Techniques

Figure 9.1: The music application (Prototype) is represented in four contexts of use:
A represents the music player rendered with a gecko’s or opera’s browser
engine. Where B represents the application rendered with a MSIE’s
browser engine. C and D represent the application in the restricted mode.
Indeed, the integrated media browser plugin from A and C, on which the
application is running does not support the auto play back function.

65

10 Discussion

10 Discussion

The UI specification encompasses the definition of the UI model and functionalities.
A subset of W3C standards like RIML or SIML can serve as a model definition lan-
guage. During the content definition, many research approaches provide the ability
to define optional and alternative content. Defining optional content for each device
class is somehow in contradiction with the "author once, present anywhere princi-
ple". Even though it allows the author to prepare special versions of content for
different devices, defining optional content for each device class leads to an increase
in maintenance cost.
The RIML language profile also provides the possibility to integrate basis content
control elements coming from SIML. These control elements are used by the markup
mapper to choose the appropriate XSLT stylesheet. Therefore, the designer must
provide stylesheets for each targeted markup language. Proving many stylesheets is
also one negative development aspect: Then in the course of evolution of the applica-
tion, each defined style must be improved. Furthermore, when developing for a new
category of devices, the specified model, such as layout and stylesheet definitions,
should be customized.
In our approach, an abstract SUID was used to describe the interface. Optionally,
the author can use property files to map the defined model with domain specific
informations. The information contained in these files is translated at runtime and
forwarded in the transformation process. The advantage of such an approach is that
the configuration properties, as well as the defined input model, can be shared by
many applications. The UI presentation depends exclusively on the CSS style defi-
nition. In order to improve the UI usability, the target domain is produced without
any styles and layout information.
On the other hand, the development with RIML can be more convenient. The RIML
framework provides a couple of authoring and conversion tools. Furthermore, the
RIML language profile is based on open standards. Therefore, it can be used by
anyone while maintaining compatibility among different implementations. Since a
standard is open, it is also possible to implement extensions in some future version.
Since XSL transformations are popular, it should be very easy to find a developer
who can maintain the application.

66

However, because of the many variants of platform- and context specific adaptations
that might be necessary in arbitrary applications, there is an exponential number
of possible combinations. Therefore, implementing adaptations for specific combina-
tions is prohibitive. A development with CTs and Prolog provides the ability to build
modular and individual adaptations and to compose those adaptations when needed.
Furthermore, using the LAIM to define the UI, a strict separation between content,
layout, presentation and domain logic is guaranteed. Configuration files are used to
map the UI definition with optional and additional domain specific properties. Us-
ing such an approach, it can possible to change the presentation whenever needed
without changing the running code.

67

11 Outlook

11 Outlook

Web applications can be developed by combining different Web services. When a
model is described with LAIM, a strict separation between the presentation logic
and the domain logic is provided. In this way the usability of the UI is guaranteed.
The described model, as well as the define properties, can be shared along the service
interfaces. Accordingly, LAIM can be used to create adaptable UIs coming from dif-
ferent sources at runtime. Doing this, it is possible to use the development with CTs
not only for output generation and UIs adaptations, but also for UI composition.
At the current state of our research, the designer should write many CSS stylesheets,
which should be chosen according to the output medium. The alternative should be
to write the style using relative values. In the future release it should be possible to
define the stylesheet once and to transform the given one according to the delivery
context and to the UI requirements. It should also be possible to specify the UI func-
tionalities using FSMs. Using property files to capture the specified UI, it should also
be possible to configure the behavior of the application without the need to modify
the running code. Thus configurable, adaptable UIs can be created using LAIM to
describe the UI and CT to transform the described model according to the delivery
context.
In a future prospective, LAIM can be used to create highly interactive Web UI in
combination with XUP [Yu et al. 2006] instead of Ajax.
Another goal of modern Web 2.0 development [opengardensblog 2006] is the creation
of Web applications by transforming the existing ones into context sensitive applica-
tions [Hong and Lee 2006]. For that reason a research study about how LAIM can
be used to create real-time Web contents adaptation can be carried out.
Since most of the prefetch technologies used in the current cache service schemes
did not take into consideration the systematically different requirements of the de-
livery context of the Client-Server interactions, as well as of the global coordination,
the research result presented in Zhang et al. [2008] should be combined with our
development approach to guarantee the best user experience.

68

11.1 Software used by the author

Annex

11.1 Software used by the author

In the following, there is the list of tools used in this work.

• Eclipse
Open Source IDE
Website: http://www.eclipse.org/

• The Prolog Development Tool
Website: https://sewiki.iai.uni-bonn.de/research/pdt/users/download

• Aptana Studio
Web development environment, that combines powerful authoring tools for
HTML, CSS, and JavaScript.
Website: http://aptana.com/

• LATEX
This work was written in LATEX. TEX Live has been used as LATEX distribution
and as editor, TeXnicCenter has been used.
Websites: http://www.tug.org/texlive/acquire.html,
http://www.texniccenter.org/

69

http://www.eclipse.org/
https://sewiki.iai.uni-bonn.de/research/pdt/users/download
http://aptana.com/
http://www.tug.org/texlive/acquire.html
http://www.texniccenter.org/

11 Outlook

List of abbreviations

AJAX . Asynchronous JavaScript and XML
API . Application Programming Interface
AST . Abstract Syntax Tree
CC/PP . Composite Capabilities/Preferences Profiles
CSS . Cascading Style Sheets
CT . Conditional Transformation
CTC . CT Core
CTSeq . CT Sequence
DIAD . Device Independent Application Development
DIAL . Device Independent Authoring Language
DISelect . Content Selection for Device Independence
DIW . Device Independent Web
DIWAF . Device Independent Web Application Framework
DIWE . Device-Independent Web Engineering
DIWF . Device Independent Web Framework
DIWG . Device Independence Working Group
DOM . Document Object Model
FSM . Finite State Machine
gAST . generalized Abstract Syntax Tree
HP . Hewlett-Packard
HTML . HyperText Markup Language
HTTP . Hypertext Transfer Protocol
IDE . Integrated Development Environment
J2EE . Java 2 Enterprise Edition
JSF . JavaServer Faces
JSON . JavaScript Object Notation
LAIM . Language for Abstract Interface Modeling
LCD . Lowest Common Denominator
MP3 . MPEG-1 Audio Layer 3
MSIE . Microsoft Internet Explorer
MVC . Model View Controller

70

11.1 Software used by the author

MVP . Model View Presenter
OMA . Open Mobile Alliance
OO-H . Object-Oriented-Hypermedia
OOHDM Object-Oriented Hypermedia Design Method
OWP . One Web Principle
PC . Personal Computer
Prolog . PROgramming in LOGic
RDF . Resource Description Framework
RIML . Renderer-Independent Markup Language
SMIL . Synchronized Multimedia Integration Language
SOA . Service Oriented Architecture
SUI . Semantic User Interface
SUID . SUI Description
UA . User Agent
UAProf . UA Profile
UCD . User-Centered Design
UI . User Interface
UID . Unique identifier
UIFS . UI Functionality Specification
UML . Unified Modeling Language
URL . Uniform Resource Locator
UsiXML . User interface eXtensible Markup Language
W3C . World Wide Web Consortium
WCSS . Wireless CSS
WML . Wireless Markup Language
WORA . Write Once and Run Anywhere
WURFL . Wireless Universal Resource File
XAML . eXtensible Application Markup Language
XHR . XMLHttpRequest
XHTML . eXtensible Hypertext Markup Language
XHTML-MP XHTML-Mobile Profile
XIML . eXtensible Interface Markup Language
XML . eXtensible Markup Language
XPath . XML Path Language
XSD . XML Schema Definition Language
XSL . eXtensible Stylesheet Language
XSLT . XSL Transformation
XUL . XML User interface Language

71

11 Outlook

XUP . eXtensible User interface Protocol

72

List of Figures

List of Figures

2.1 General architecture of proposed system: Semantic UI descriptions are
adapted and transformed to Web standards. User events are directly
delivered to the executed application. 6

4.1 CTs Representation . 18

6.1 LAIM Architecture: The elements used to represent a user interface
semantically in LAIM . 36

6.2 XML representation of a LAIM sample, thereby the XML Schema is
located on the file system in LAIM-Schema-lite.xsd 36

7.1 Description of a LAIM-Group containing different element types. Ac-
cording to this description the output can be an XForms component.
The transformation result is related to the semantics of the LAIM-
Group element. The other described UI components are also trans-
formed according to their semantics description. 41

7.2 Transformation of a LAIM group node with the referring action node
into a list container. 42

7.3 Transformation of a LAIM group with the referring input nodes. . . 43

8.1 Standard Ajax web application model. 46
8.2 A detailed view of the LAIM transformation chain. 49

9.1 The music application (Prototype) is represented in four contexts of
use: A represents the music player rendered with a gecko’s or opera’s
browser engine. Where B represents the application rendered with
a MSIE’s browser engine. C and D represent the application in the
restricted mode. Indeed, the integrated media browser plugin from A
and C, on which the application is running does not support the auto
play back function. 65

73

Listings Index

Listings Index

4.1 Example of Prolog Facts . 18
4.2 Rule definition . 19
4.3 Querying the fact base in a Prolog manner 20
4.4 Node facts definition in CTs . 22
4.5 Relation Fact in CTs . 23
4.6 Another relation fact in CTs . 23
4.7 Sugared CTC Syntax in used . 25
4.8 CT sequences in used . 26
6.1 UIElement Attributes Schema . 36
6.2 LAIM Output Attributes Schema . 37
6.3 LAIM Input Attributes Schema . 37
7.1 Condition Transformation of a LAIM group node element 44
7.2 Conditional Transformation Sequence 44
8.1 Embedded JavaScript function in XHTML code. 46
8.2 The XMLHttpRequest Object used for Client-Server Interaction. . . . 47
8.3 Input element according to the XHTML presentation requirements . . 52
8.4 Intermediate meta model definition principle. 52
8.5 LAIM-Input predicates translated after the user requirements. 53
8.6 Intermediates Prolog facts related to the presentation domain 54
8.7 CT sequence transformation example. 55
8.8 Translation in the output model depending on the presentation domain. 56
8.9 Predicates translation into the target domain. 57
8.10 Method overloading simulation in CTs. 59
9.1 Layout description with RIML. 62

74

Bibliography

Alliance 2006
Alliance, Open M.: Wireless CSS Specification / Open Mobile Alliance
(OMA). Version: 2006. http://www.openmobilealliance.org/technical/

release_program/docs/Browsing/V2_3-20080331-A/OMA-WAP-WCSS-V1_

1-20061020-A.pdf. 2006. – Forschungsbericht 5.2.2.1

alliance 2008a
alliance, Openajax: Introducing Ajax and OpenAjax. Internet. http://www.

openajax.org/whitepapers/IntroducingAjaxandOpenAjax.php. Version: 02
2008. – Last Visited: 2009.02.08 2.6

alliance 2008b
alliance, Openajax: Introduction to Mobile Ajax for De-
velopers. Internet. http://www.openajax.org/whitepapers/

IntroductiontoMobileAjaxforDevelopers.php. Version: 02 2008. – Last
Visited: 2009.02.08 2.6

Axelsson et al. 2006
Axelsson, Jonny ; Birbeck, Mark ; Dubinko, Micah ; Epperson, Beth ;
Ishikawa, Masayasu ; McCarron, Shane ; Navarro, Ann ; Pemberton,
Steven: XHTML 2.0 / w3c. Version: 2006. http://www.w3.org/TR/2006/

WD-xhtml2-20060726. 2006. – Forschungsbericht 5.2.2.1

Berners-Lee et al. 1994
Berners-Lee, T. ; Masinter, L. ; McCahill, M.: Uniform Resource Locators
(URL) / tools.ietf.org. 1994. – Tech Report. – Edition: September 7, 1994;
URL:http://tools.ietf.org/html/draft-ietf-uri-url-07 3.2

B’far 2004
B’far, Reza: Mobile Computing Principles: Designing and Developing Mobile
Applications with UML and XML. New York, NY, USA : Cambridge University
Press, 2004. – ISBN 0521817331 9.2.1

Bickmore and Schilit 1997
Bickmore, Timothy W. ; Schilit, Bill N.: Digestor: Device-independent Access

75

http://www.openmobilealliance.org/technical/release_program/docs/Browsing/V2_3-20080331-A/OMA-WAP-WCSS-V1_1-20061020-A.pdf
http://www.openmobilealliance.org/technical/release_program/docs/Browsing/V2_3-20080331-A/OMA-WAP-WCSS-V1_1-20061020-A.pdf
http://www.openmobilealliance.org/technical/release_program/docs/Browsing/V2_3-20080331-A/OMA-WAP-WCSS-V1_1-20061020-A.pdf
http://www.openajax.org/whitepapers/Introducing Ajax and OpenAjax.php
http://www.openajax.org/whitepapers/Introducing Ajax and OpenAjax.php
http://www.openajax.org/whitepapers/Introduction to Mobile Ajax for Developers.php
http://www.openajax.org/whitepapers/Introduction to Mobile Ajax for Developers.php
http://www.w3.org/TR/2006/WD-xhtml2-20060726
http://www.w3.org/TR/2006/WD-xhtml2-20060726

Bibliography

to the World Wide Web. In: Digestor: (1997). http://citeseer.ist.psu.edu/
old/bickmore97digestor.html 1, 3.2

Bihler et al. 2008
Bihler, Pascal ; Fotsing, Merlin ; Kniesel, Günter ; ; Joffroy, Cedric: Us-
ing Conditional Transformations for Semantic User Interface Adaptation. In:
Kotsis, Gabriele (Hrsg.) ; Taniar, Daviv (Hrsg.) ; Parede, Eric (Hrsg.) ;
Khalil, Ismail (Hrsg.) ; November (Veranst.): The 10th International Confer-
ence on Information Integration and Web-based Application and Services (ii-
WAS2008). Linz : ACM, Inc, September 2008, S. 677 – 680 1, 2.2, 2.3, 2.4, 4.4,
6.1

Bihler and Kniesel 2007
Bihler, Pascal ; Kniesel, Günter: Seamless Cross-Application Workflow Sup-
port by User Interface Fusion. In: Christina Brodersen, Susanne B. (Hrsg.)
; Klokmose, Clemens N. (Hrsg.): Multiple and Ubiquitous Interaction. DAIMI
PB-581, University of Aarhus, 2007 2.2

Bos et al. 2009
Bos, Bert ; Çelik, Tantek ; Hickson, Ian ; Lie, Hakon Wium: Cascading
Style Sheets Level 2 Revision 1 (CSS 2.1) Specification / W3C. Version: 2009.
http://www.w3.org/TR/2009/CR-CSS2-20090423/. 2009. – Forschungsbericht
5.2.2, 5.2.2.1

Boyer 2009
Boyer, John M.: XForms 1.1 / W3C. Version: 2009. http://www.w3.org/TR/
2009/PR-xforms11-20090818/. 2009. – Forschungsbericht 7.2.1

Bugliesi et al. 1994
Bugliesi, Michele ; Lamma, Evelina ; Mello, Paola ; Paola: Modularity in
logic programming. In: Proceedings of the eleventh international conference on
Logic programming. Cambridge, MA, USA : MIT Press, 1994. – ISBN 0–262–
72022–1, S. 15–17 4.3

Bulterman et al. 2008
Bulterman, Dick ; Jansen, Jack ; Cesar, Pablo ; Mullender, Sjoerd ;
Hyche, Eric ; DeMeglio, Marisa ; Quint, Julien ; Kawamura, Hiroshi ;
Weck, Daniel ; Pañeda, Xabiel G. ; Melendi, David ; Cruz-Lara, Samuel
; Hanclik, Marcin ; Zucker, Daniel F. ; Michel, Thierry: Synchronized
Multimedia Integration Language (SMIL 3.0) / W3C. Version: 2008. http:

//www.w3.org/TR/2008/REC-SMIL3-20081201/. 2008. – Forschungsbericht
3.4.1.1, 3.4.1.3

76

http://citeseer.ist.psu.edu/old/bickmore97digestor.html
http://citeseer.ist.psu.edu/old/bickmore97digestor.html
http://www.w3.org/TR/2009/CR-CSS2-20090423/
http://www.w3.org/TR/2009/PR-xforms11-20090818/
http://www.w3.org/TR/2009/PR-xforms11-20090818/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/

Bibliography

Butler et al. 2002
Butler, Mark ; Giannetti, Fabio ; Gimson, Roger ; Wiley, Tony: Device
Independence and the Web. In: IEEE Internet Computing September/October
2002 pp 81-86 HPL-2002-249 (2002), 5. http://www.hpl.hp.com/research/

papers/2003/device_independence.pdf 3.3

Clark 1999
Clark, James: XSL Transformations (XSLT) Version 1.0 / W3C. Version: 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116. 1999. – XML Language
transformation 2.1

cs.odu.edu 2003
cs.odu.edu: Quantification - Forming Propositions from Predicates. Inter-
net. http://www.cs.odu.edu/~toida/nerzic/content/logic/pred_logic/

quantification/quantification.html. Version: September 2003. – Last up-
date: Dienstag, 23. September 2003 17:12:42 4.1.1

Daintith
Daintith, John: closed-world assumption. Internet. http://www.

encyclopedia.com/doc/1O11-closedworldassumption.html. – A Dictionary
of Computing. 2004. Retrieved September 17, 2009 from Encyclopedia.com 4.1.2

Degler 2006
Degler, Duane: Preliminary Analysis of Users and Tasks for the Semantic
Web. In: User Focus 2006 conference proceedings (2006). http://www.

designforcontext.com/publications/lb_users_tasks_semantic_web.pdf

8.1

Dubinko 2009
Dubinko, Micah: XML.com: Ten Favorite XForms Engines. http://www.xml.
com/lpt/a/1281. Version: 09 2009. – Internet: September 10, 2003; XML.com
Copyright © 1998-2006 O’Reilly Media, Inc. 9.2.1

Engels et al. 2008
Engels, Gregor ; Humm, Andreas Hessand B. ; Juwig, Oliver ; Lohmann,
Marc ; Richter, Jan-Peter: Quasar Enterprise: Designing Service-oriented Ap-
plication Landscapes. Auflage 2008.03.01. dpunkt Verlag, 2008 (ISBN-978-3-
89864-506-5) 7.1

Feldt 2007
Feldt, Kenneth C. ; Feldt, Kenneth C. (Hrsg.): Programming Firefox Building
Rich Internet Applications with XUL. First Edition April 2007. O’Reilly, 2007
(ISBN 978-0-596-10243-2). – 511 S. 3.3

77

http://www.hpl.hp.com/research/papers/2003/device_independence.pdf
http://www.hpl.hp.com/research/papers/2003/device_independence.pdf
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.cs.odu.edu/~toida/nerzic/content/logic/pred_logic/quantification/quantification.html
http://www.cs.odu.edu/~toida/nerzic/content/logic/pred_logic/quantification/quantification.html
http://www.encyclopedia.com/doc/1O11-closedworldassumption.html
http://www.encyclopedia.com/doc/1O11-closedworldassumption.html
http://www.designforcontext.com/publications/lb_users_tasks_semantic_web.pdf
http://www.designforcontext.com/publications/lb_users_tasks_semantic_web.pdf
http://www.xml.com/lpt/a/1281
http://www.xml.com/lpt/a/1281

Bibliography

Forum 2001
Forum, WAP: WAG UAProf Version 20-Oct-2001 / OMA.
Version: 2001. http://www.openmobilealliance.org/tech/affiliates/

wap/wap-248-uaprof-20011020-a.pdf. 2001. – Forschungsbericht. – Wireless
Application Protocol WAP-248-UAPROF-20011020-a 3.1

Foundation 2009
Foundation, Windows P.: (XAML) Extensible Application Markup Language
- Windows Presentation Foundation. Internet. http://msdn.microsoft.com/

en-us/library/ms747122.aspx. Version: 2009. – Online; Freiday, 30-January-
2009 14:45:34 3.3

Francisco M. Trindade
Francisco M. Trindade, Marcelo S. P.: UsiXML4ALL - A Multiplatform
Software Development Tool. 3.3

Freeman et al.
Freeman, Elisabeth ; Sierra, Kathy ; Bates, Bert: Head First design patterns.
O’Reilly (9780596007126) 6.1, 8.4.5.1

Gao et al. 2009
Gao, Shudi (. ; Sperberg-McQueen, C. M. ; Technologies, Black M. ;
Thompson, Henry S.: W3C XML Schema Definition Language (XSD) / W3C.
2009. – Forschungsbericht. – http://www.w3.org/TR/2009/CR-xmlschema11-
1-20090430/ 4, 6.1

Garrett
Garrett, Jesse J.: Ajax: A New Approach to Web Applications. Internet.
http://adaptivepath.com/ideas/essays/archives/000385.php. – Last Up-
date: February 18, 2005 1, 2.6, 8.2

Giannetti 2002
Giannetti, Fabio: Device Independence Web Application Framework (DI-
WAF). In: W3C Device Independence Authoring Techniques Workshop. St Leon,
Germany, September 2002 2.2, 3.4.2.2, 6.2.1

Gimson et al. 2003
Gimson, Roger ; Finkelstein, Shlomit R. ; Maes, Stéphane ; Surya-

narayana, Lalitha: Device Independence Principles / W3C. Version: 2003.
http://www.w3.org/TR/2003/NOTE-di-princ-20030901/. 2003. – Forschungs-
bericht 3

Gimson et al. 2006
Gimson, Roger ; Lewis, Rhys ; Sathish, Sailesh: Delivery Context Overview

78

http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://msdn.microsoft.com/en-us/library/ms747122.aspx
http://msdn.microsoft.com/en-us/library/ms747122.aspx
http://adaptivepath.com/ideas/essays/archives/000385.php
http://www.w3.org/TR/2003/NOTE-di-princ-20030901/

Bibliography

for Device Independence / W3C. Version: 2006. http://www.w3.org/TR/2006/
NOTE-di-dco-20060320/. 2006. – Forschungsbericht 3.1

Glover and Davies 2005
Glover, T. ; Davies, J.: Integrating device independence and user profiles on
the Web. In: BT Technology Journal Volume 23, Number 3 / Juli 2005 (2005),
Jully, Nr. 1358-3948 (Print) 1573-1995 (Online), S. 239–248. http://dx.doi.

org/10.1007/s10550-005-0045-y. – DOI 10.1007/s10550–005–0045–y 3.2

Gómez et al. 2001
Gómez, Jaime ; Cachero, Cristina ; Pastor, Oscar: Conceptual Modeling of
Device-Independent Web Applications. In: IEEE MultiMedia 8 (2001), Nr. 2, S.
26–39. http://dx.doi.org/http://dx.doi.org/10.1109/93.917969. – DOI
http://dx.doi.org/10.1109/93.917969. – ISSN 1070–986X 5.1.1

Goodger et al. 2008
Goodger, Ben ; Hickson, Ian ; Hyatt, David ; Waterson, Chris: XML
User Interface Language (XUL) 1.0. Internet. http://www.myxaml.com/wiki/
ow.asp?DeclarativeVsImperativeProgramming. Version: 2008. – Last edited,
2008.07.09 10:22:58 3.3

Grassel et al.
Grassel, Guido ; Lauff, Markus ; Spriestersbach, Axel ; Wasmund,
Michael: Definition and prototyping of a Renderer-independent ML 3.4.1.1

Group 2002
Group, Web C.: Content Adaptation with the Add-on Technique / Web Com-
merce Group. Version: 2002. http://www-mit.w3.org/2002/07/DIAT/posn/

wcg/wcg.html. 2002. – Forschungsbericht 3.3

Hanrahan and Merrick 2004
Hanrahan, Rotan ; Merrick, Roland: Authoring Techniques for Device In-
dependence / W3C Working Group. Version: 2004. http://www.w3.org/TR/

2004/NOTE-di-atdi-20040218/. 2004. – Forschungsbericht 3.3

Hong and Lee 2006
Hong, Youn-Sik ; Lee, Ki-Young: A Real-Time Web Contents Adaptation for
Mobile User. In: Computational Science and Its Applications - ICCSA 2006,
2006, 249–258 11

Hong et al. 2003
Hong, Youn-Sik ; Park, In-Sook ; Ryu, Jeong-Taek ; Hur, Hye-Sun: Pocket
News : News Contents Adaptation For Mobile User. (2003). www.ht03.org/

papers/pdfs/10.pdf 1

79

http://www.w3.org/TR/2006/NOTE-di-dco-20060320/
http://www.w3.org/TR/2006/NOTE-di-dco-20060320/
http://dx.doi.org/10.1007/s10550-005-0045-y
http://dx.doi.org/10.1007/s10550-005-0045-y
http://dx.doi.org/http://dx.doi.org/10.1109/93.917969
http://www.myxaml.com/wiki/ow.asp?DeclarativeVsImperativeProgramming
http://www.myxaml.com/wiki/ow.asp?DeclarativeVsImperativeProgramming
http://www-mit.w3.org/2002/07/DIAT/posn/wcg/wcg.html
http://www-mit.w3.org/2002/07/DIAT/posn/wcg/wcg.html
http://www.w3.org/TR/2004/NOTE-di-atdi-20040218/
http://www.w3.org/TR/2004/NOTE-di-atdi-20040218/
www.ht03.org/papers/pdfs/10.pdf
www.ht03.org/papers/pdfs/10.pdf

Bibliography

Hors et al. 2004
Hors, Arnaud L. ; Hégaret, Philippe L. ; Lauren Wood, SoftQuad ; Nicol,
Gavin ; Robie, Jonathan ; Champion, Mike ; Byrne, Steve: Document Object
Model (DOM) Level 3 Core Specification / W3C. Version: 2004. http://www.

w3.org/TR/2004/REC-DOM-Level-3-Core-20040407. 2004. – Forschungsbericht
5.1.2

Hwang et al. 2002
Hwang, Yonghyun ; Seo, Eunkyong ; Kim, Jihong: WebAlchemist: A Structure-
Aware Web Transcoding System for Mobile Devices. In: Mobile Search Work-
shop, May 7, 2002, Honolulu, Hawaii, USA. ACM 1-58113-449-5/02/0005.
(2002). http://dx.doi.org/http://davinci.snu.ac.kr/Download/msw02.

pdf. – DOI http://davinci.snu.ac.kr/Download/msw02.pdf 2.2

inc. 2004
inc., Amzi!: Adventure in Prolog. Internet. http://www.amzi.com/

AdventureInProlog/. Version:March 2004. – Last Updated: Freitag, 21. Mai
2004 19:24:17 4.1.1, 4.1.3

ISO13407 1999
ISO13407: Human-centred design processes for interactive systems. Internet,
1999 8.1

Iyengar 1994
Iyengar, Sudharsan R.: Optimal Backtracking based on Failure-bindings in
Prolog, 1994, S. 1005–1025. – Proc. ICCI94, 1994 Int. Conf. on Computing and
Information 4.1.5

J. et al. 2008
J., Diaz ; I., Harari ; P., Amadeo: WW3C mobile web best prac-
tices evaluation of an educational website. In: Information Technology In-
terfaces, 2008. ITI 2008. 30th International Conference ISSN: 1330-1012,
ISBN: 978-953-7138-12-7, INSPEC Accession Number: 10140489, Digital Ob-
ject Identifier: 10.1109/ITI.2008.4588447, Current Version Published: 2008-
08-05 (2008), 421-426. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?

arnumber=4588447 9

Jansen and Bulterman 2008
Jansen, Jack ; Bulterman, Dick C.: Enabling adaptive time-based web ap-
plications with SMIL state. In: DocEng ’08: Proceeding of the eighth ACM sym-
posium on Document engineering. New York, NY, USA : ACM, 2008. – ISBN
978–1–60558–081–4, S. 18–27 3.4.1.3

80

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://dx.doi.org/http://davinci.snu.ac.kr/Download/msw02.pdf
http://dx.doi.org/http://davinci.snu.ac.kr/Download/msw02.pdf
http://www.amzi.com/AdventureInProlog/
http://www.amzi.com/AdventureInProlog/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4588447
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4588447

Bibliography

Johnson 1998
Johnson, Peter: Usability and Mobility; Interactions on the move. (1998).
http://www.dcs.gla.ac.uk/~johnson/papers/mobile/HCIMD1.html. – First
Workshop on Human Computer Interaction with Mobile Devices; GIST Techni-
cal Report G98-1; 21-23rd May 1998. 1

Karimpour et al. 2008
Karimpour, Habib ; Isazadeh, Ayaz ; Moshkenani, Mohsen S.:
Object-Oriented Hypermedia Design and J2EE Technology for Web-
based. In: Issues in Informing Science and Information Technology 5
(2008), 729–740. http://proceedings.informingscience.org/InSITE2008/

IISITv5p729-740Karim475.pdf 5.1.1, 5.1.2

Kawash 2004
Kawash, Jalal: Declarative user interfaces for Handheld Devices. In: WISICT
’04: Proceedings of the winter international symposium on Information and com-
munication technologies, Trinity College Dublin, 2004, 1-6 3.4.3, 5.1.2, 5.3, 6.1

Kerer and Kirda 2001
Kerer, Clemens ; Kirda, Engin: Web Engineering. Springer Berlin / Hei-
delberg, 2001. – 135–147 S. http://dx.doi.org/10.1007/3-540-45144-7_14.
http://dx.doi.org/10.1007/3-540-45144-7_14. – ISBN: 978-3-540-42130-6
3.4.2.1

Kindler 2007
Kindler, Dipl.-Inf. M.: Entwicklung mobiler Web-Anwendungen. in-
ternet. http://www.cityexperience.net/site/uploads/media/t3n_wurfl_

einfuehrung_final.pdf. Version: 2007.. – © yeebase 2007. www.t3n-
magazin.de 3.1, 3.3

Kirakowski and Collins 1999
Kirakowski, Jurek ; Collins, Karen: An introduction to ISO 13 407. Inter-
net. http://www.ucc.ie/hfrg/emmus/methods/iso.html. Version: September
1999. – Copyright EMMUS 1999. Last updated: September 29, 1999. 8.1

Kirda and Kerer 2004
Kirda, Engin ; Kerer, Clemens: DIWE: A Framework for Constructing Device-
Independent Web Applications. In: UMICS 2004, LNCS 3272 Volume 3140/2004
(2004), S. 96110. – L. Baresi et al. (Eds.): UMICS 2004, LNCS 3272, pp. 96110,
2004. Springer-Verlag Berlin Heidelberg 2004 2.2, 3.4, 3.4.2.1

Kiss 2007
Kiss, Cédric: Composite Capability/Preference Profiles (CC/PP): Structure

81

http://www.dcs.gla.ac.uk/~johnson/papers/mobile/HCIMD1.html
http://proceedings.informingscience.org/InSITE2008/IISITv5p729-740Karim475.pdf
http://proceedings.informingscience.org/InSITE2008/IISITv5p729-740Karim475.pdf
http://dx.doi.org/10.1007/3-540-45144-7_14
http://dx.doi.org/10.1007/3-540-45144-7_14
http://www.cityexperience.net/site/uploads/media/t3n_wurfl_einfuehrung_final.pdf
http://www.cityexperience.net/site/uploads/media/t3n_wurfl_einfuehrung_final.pdf
http://www.ucc.ie/hfrg/emmus/methods/iso.html

Bibliography

and Vocabularies 2.0 / W3C. Version: 2007. http://www.w3.org/TR/2007/

WD-CCPP-struct-vocab2-20070430. 2007. – Forschungsbericht 3.1

Kleppe et al. 2003
Kleppe, Anneke G. ; Warmer, Jos B. ; Bast, Wim ; Co, Addison-Wesley P.
(Hrsg.): MDA Explained: The Model Driven Architecture(TM): Practice and
Promise. Addison-Wesley Longman Publishing Co., Inc.„ 2003. – ISBN
9787115118127. – Boston, MA, USA, rev and revised edition, April 2003 4,
4.1

Kniesel 2006a
Kniesel, Günter: A Logic Foundation for Conditional Program Transformations
/ Computer Science Department III, University of Bonn, Germany. 2006 (IAI-
TR-2006-01, ISSN 0944-8535). – Technical report 4.1, 4.4

Kniesel 2006b
Kniesel, Günter: A Logic Foundation for Program Transformations / CS
Dept. III, University of Bonn. Germany, January 2006 (IAI-TR-2006-01). –
Technical report. –
Online: http://www.cs.uni-bonn.de/~gk/papers/

IAI-TR-2006-1-kniesel-CTS.pdf 2.4, 4.2

Kniesel 2008
Kniesel, Günter: Detection and Resolution of Weaving Interactions. In: Trans-
actions on Aspect-Oriented Software Development (Special issue ‘Dependencies
and Interactions with Aspects’) LNCS (2008) 4.4

Kniesel and Bardey 2006
Kniesel, Günter ; Bardey, Uwe: An Analysis of the Correctness and Com-
pleteness of Aspect Weaving. In: Proceedings of Working Conference on Reverse
Engineering 2006 (WCRE 2006). Benevento, Italy : IEEE, October 2006. – ISBN
0–7695–2719–1, 324-333 4.4

Kniesel and Koch 2003
Kniesel, Günter ; Koch, Helge: Program-independent Composition of Condi-
tional Transformations / Computer Science Department III, University of Bonn,
Germany. 2003 (IAI-TR-03-1, ISSN 0944-8535). – Technical report. – Updated
version published in: Science of Computer Programming, special issue on Pro-
gram Transformation, 52 1-3 (2004), p. 9-51, Elsevier Science, 2004 4.1, 4.4

Koskimies 2004
Koskimies, Oskari: Metadata for Client-side Content Adaptation. Internet.
http://web5.w3.org/2004/06/DI-MCA-WS/submissions/position-nokia.

82

http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430
http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430
http://www.cs.uni-bonn.de/~gk/papers/IAI-TR-2006-1-kniesel-CTS.pdf
http://www.cs.uni-bonn.de/~gk/papers/IAI-TR-2006-1-kniesel-CTS.pdf
http://web5.w3.org/2004/06/DI-MCA-WS/submissions/position-nokia.html
http://web5.w3.org/2004/06/DI-MCA-WS/submissions/position-nokia.html

Bibliography

html. Version: 2004. – Disclaimer: Opinions and views expressed in this paper
belong to the author and do not necessarily represent the views of Nokia. 3.3

Kreger 2001
Kreger, Heather: Web Services Conceptual Architecture (WSCA
1.0). Internet. http://www.cs.uoi.gr/~zarras/mdw-ws/

WebServicesConceptualArchitectu2.pdf. Version:May 2001. – IBM
Software Group 3.4.3

Ku et al. 2005
Ku, Tai-Yeon ; Park, Dong-Hwan ; Moon, Kyeong-Deok: Device-Independent
Markup Language. In: Computer and Information Science, ACIS International
Conference on 0 (2005), S. 508–512. ISBN 0–7695–2296–3 2.2

Law 2007
Law, Derek: Taligent MVP in interactive statistical graphics. In: Computational
Statistics Bd. 23 Department of Statistics, The University of Auckland, Physica
Verlag, An Imprint of Springer-Verlag GmbH, 2007, 487–495 5.1.2

Lewis 2007
Lewis, Rhys: Mobile Ajax and Application Adaptation. In: W3C/Open Ajax
Alliance Workshop on Mobile Ajax, September 2007 (2007). http://www.w3.

org/2007/06/mobile-ajax/papers/volantis.lewis.pdf. – Volantis Systems
Ltd. Position Paper 2.6

Lewis Sond
Lewis, Rhys: W3C Mobile Web Initiative Workshop Device Independence and
the Mobile Web Initiative / W3C Device Independence Working Group (DIWG).
Version: Sonday, 17. October 2004 23:35:03. http://dx.doi.org/http://www.

w3.org/2004/10/MWIWS-papers/DIWGAndMobileWeb.html. Sonday, 17. October
2004 23:35:03. – Texhreport 3.3

Lewis et al. 2007
Lewis, Rhys ; Merrick, Roland ; Froumentin, Max: Content Selection for
Device Independence (DISelect) 1.0 / W3C. Version: 2007. http://www.w3.

org/TR/2007/CR-cselection-20070725/. 2007. – Forschungsbericht 3.4.1.2

Limbourg et al. 2004
Limbourg, Quentin ; Vanderdonckt, Jean ; Michotte, Benjamin ; Bouil-

lon, Laurent ; Florins, Murielle ; Trevisan, Daniela: USIXML: A User Inter-
face Description Language for Context-Sensitive User Interfaces. In: Luyten,
K. (Hrsg.) ; Abrams, M. (Hrsg.) ; Limbourg, Q. (Hrsg.) ; Vanderdonckt, J.
(Hrsg.) ; ACM (Veranst.): Proceedings of the ACM AVI’2004 Workshop "Devel-

83

http://web5.w3.org/2004/06/DI-MCA-WS/submissions/position-nokia.html
http://web5.w3.org/2004/06/DI-MCA-WS/submissions/position-nokia.html
http://www.cs.uoi.gr/~zarras/mdw-ws/WebServicesConceptualArchitectu2.pdf
http://www.cs.uoi.gr/~zarras/mdw-ws/WebServicesConceptualArchitectu2.pdf
http://www.w3.org/2007/06/mobile-ajax/papers/volantis.lewis.pdf
http://www.w3.org/2007/06/mobile-ajax/papers/volantis.lewis.pdf
http://dx.doi.org/http://www.w3.org/2004/10/MWIWS-papers/DIWGAndMobileWeb.html
http://dx.doi.org/http://www.w3.org/2004/10/MWIWS-papers/DIWGAndMobileWeb.html
http://www.w3.org/TR/2007/CR-cselection-20070725/
http://www.w3.org/TR/2007/CR-cselection-20070725/

Bibliography

oping User Interfaces with XML: Advances on User Interface Description Lan-
guages" (Gallipoli,May 25, 2004) ACM, 2004, 55-62 1, 3.3

Ludewig 2003
Ludewig, Jochen: Models in software engineering an introduction. In: Software
and Systems Modeling Volume 2 (2003), March, 5-14. http://dx.doi.org/10.
1007/s10270-003-0020-3. – DOI 10.1007/s10270–003–0020–3 6, 6.3

Manuel Cantera Fonseca and Hierro 2007
Manuel Cantera Fonseca, Javier S. Ignacio Marin Prendes P. Ignacio
Marin Prendes ; Hierro, Juan J.: Declarative Models for Ubiquitous Web Appli-
cations Morfeo-MyMobileWeb - Position Paper. Morfeo-MyMobileWeb Project,
04 2007. http://www.w3.org/2007/02/dmdwa-ws/Papers/jose-m-c-fonseca.
html. – position paper 3.3

Mens et al. 2005
Mens, Tom ; Czarnecki, Krzysztof ; Gorp, Pieter V.: 04101 Discussion -
A Taxonomy of Model Transformations. In: Bezivin, Jean (Hrsg.) ; Heckel,
Reiko (Hrsg.): Language Engineering for Model-Driven Software Development.
Dagstuhl, Germany : Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany, 2005 (Dagstuhl Seminar Pro-
ceedings 04101). – ISSN 1862–4405 4

MicroSystem 2009
MicroSystem, SUN: JavaServer Faces Technologies - SUN MicroSys-
tem. Internet. http://java.sun.com/javaee/javaserverfaces/reference/.
Version: 2009. – Last modified, 2009.01.26 22:51:29 3.3

Molina 2004
Molina, Pedro J.: User interface generation with OlivaNova model execution
system. In: IUI ’04: Proceedings of the 9th international conference on Intelligent
user interfaces. New York, NY, USA : ACM, 2004. – ISBN 1–58113–815–6, 358–
359 5.1.1

Molina et al. 2002
Molina, Pedro J. ; Meliá, Santiago ; Pastor, Oscar: JUST-UI: A User
Interface Specification Model. In: Proceedings of Computer Aided Design of
User Interfaces (2002), 323–334. http://users.dsic.upv.es/~west/TIMIU’

02/ficheros/Molina-CADUI2002.pdf. – CADUI’2002, Les Valenciens (2002)
France 5.1.1

Network 2009
Network, Openwave D.: Openwave Developer Network - Support - Guides
& References:. Internet. http://developer.openwave.com/dvl/support/

84

http://dx.doi.org/10.1007/s10270-003-0020-3
http://dx.doi.org/10.1007/s10270-003-0020-3
http://www.w3.org/2007/02/dmdwa-ws/Papers/jose-m-c-fonseca.html
http://www.w3.org/2007/02/dmdwa-ws/Papers/jose-m-c-fonseca.html
http://java.sun.com/javaee/javaserverfaces/reference/
http://users.dsic.upv.es/~west/TIMIU'02/ficheros/Molina-CADUI2002.pdf
http://users.dsic.upv.es/~west/TIMIU'02/ficheros/Molina-CADUI2002.pdf
http://developer.openwave.com/dvl/support/documentation/guides_and_references/index.htm
http://developer.openwave.com/dvl/support/documentation/guides_and_references/index.htm

Bibliography

documentation/guides_and_references/index.htm. Version: 09 2009. – Last
updated: Dienstag, 8. September 2009 16:37:32 5.2.2.1

cellular news.com 2008
news.com cellular: Worldwide Mobile Cellular Subscribers to Reach 4 Billion
Mark Late 2008. internet. http://www.cellular-news.com/story/33811.php.
Version: 09 2008 (document)

Nutt 1995
Nutt, Gary J.: Software engineering process model: a case study. In: COCS
’95: Proceedings of conference on Organizational computing systems. New York,
NY, USA : ACM, 1995. – ISBN 0–89791–706–5, S. 324–335 6.1

O’Keefe 1985
O’Keefe, Richard A.: Towards an Algebra for Constructing Logic Programs.
In: Cohen, J. (Hrsg.) ; Conery, J. (Hrsg.) ; IEEE Computer Society Press
(Veranst.): SLP. Boston, Massachusetts : Proceedings of IEEE Symposium on
Logic Programming, July 15-18 1985 (IEEE-CS 1985), S. 152–160. – ISBN 0-
8186-0636-3 4.3

OMA
OMA: Material from Affiliates - Wireless Application Protocol. Internet. http:
//www.openmobilealliance.org/Technical/wapindex.aspx#wap20. – Last
visited: Dienstag, 8. September 2009 16:01:16 5.2.2.1

OMG 2009
OMG: OMG Unified Modeling LanguageTM (OMG UML), Superstructure
Version 2.2. Internet. http://www.omg.org/cgi-bin/doc?formal/09-02-02.
Version: 02 2009. – OMG Document Number: formal/2009-02-02; Standard
document URL: http://www.omg.org/spec/UML/2.2/Superstructure; Norma-
tive machine-readable files:n ptc/08-05-07, ptc/08-05-08, ptc/08-05-09, ptc/08-
05-10, ptc/08-05-11, ptc/08-05-12. 4, 5.1.2

opengardensblog 2006
opengardensblog: Mobile web 2.0: AJAX for mobile devices why mobile
AJAX will replace both J2ME and XHTML as the preferred platform for mo-
bile applications development. Internet. http://opengardensblog.futuretext.
com/archives/2006/01/mobile_web_20%_a.html. Version: 01 2006. – Online:
January 1, 2006 1, 2.6, 11

OpenWiki 2004
OpenWiki: Declarative Vs. Imperative Programming. Internet. http:

//www.myxaml.com/wiki/ow.asp?DeclarativeVsImperativeProgramming.
Version: 2004. – Last edited July 16, 2004 3.3

85

http://developer.openwave.com/dvl/support/documentation/guides_and_references/index.htm
http://developer.openwave.com/dvl/support/documentation/guides_and_references/index.htm
http://www.cellular-news.com/story/33811.php
http://www.openmobilealliance.org/Technical/wapindex.aspx#wap20
http://www.openmobilealliance.org/Technical/wapindex.aspx#wap20
http://www.omg.org/cgi-bin/doc?formal/09-02-02
http://opengardensblog.futuretext.com/archives/2006/01/mobile_web_20% _a.html
http://opengardensblog.futuretext.com/archives/2006/01/mobile_web_20% _a.html
http://www.myxaml.com/wiki/ow.asp?DeclarativeVsImperativeProgramming
http://www.myxaml.com/wiki/ow.asp?DeclarativeVsImperativeProgramming

Bibliography

Ort and Basler 2006
Ort, Ed ; Basler, Mark: Ajax Design Strategies. Internet, October 2006. –
Last update: Dienstag, 21. Juli 2009 01:21:35 5.3

Oshry et al. 2007
Oshry, Matt ; Auburn, RJ ; Baggia, Paolo ; Bodell, Michael ; Burke,
David ; Burnett, Daniel C. ; Candell, Emily ; Carter, Jerry ; McGlashan,
Scott ; Lee, Alex ; Porter, Brad ; Rehor, Ken: Voice Extensible Markup
Language (VoiceXML) 2.1 / W3C. Version: 2007. http://www.w3.org/TR/

2007/REC-voicexml21-20070619/. 2007. – Forschungsbericht 5.2.2.1, 8.4.5

Padawitz 1988
Padawitz, Peter: Computing in Horn Clause Theories. Texts in Theoretical
Computer Science. An EATCS. Springer Berlin, 1988 (Series 16). – 700 S. –
isbn: 978-3-540-19427-9 4.1.2

Passani 2008
Passani, Luca: Global Authoring Practices for the Mobile Web. (2008). http:
//www.passani.it/gap/ 3.1

Pastor et al. 1997
Pastor, Oscar ; Insfrán, Emilio ; Pelechano, Vicente ; Romero, José ;
Merseguer, José: OO-METHOD: An OO Software Production Environment
Combining Conventional and Formal Methods. In: CAiSE ’97: Proceedings of
the 9th International Conference on Advanced Information Systems Engineering.
London, UK : Springer-Verlag, 1997. – ISBN 3–540–63107–0, S. 145–158 5.1.1

Potel
Potel, Mike: MVP: Model-View-Presenter The Taligent Programming Model
for C++ and Java. Internet. http://www.wildcrest.com/Potel/Portfolio/

mvp.pdf. – VP & CTO Taligent, Inc. 5.1.2

Puerta and Eisenstein 2002
Puerta, Angel ; Eisenstein, Jacob: XIML: a common representation for in-
teraction data. In: IUI ’02: Proceedings of the 7th international conference on
Intelligent user interfaces. New York, NY, USA : ACM Press, 2002. – ISBN
1–58113–459–2, S. 214–215 1, 3.3

Rabin and McCathieNevile 2008
Rabin, Jo ; McCathieNevile, Charles: Mobile Web Best Practices 1.0 / W3C.
Version: 07 2008. http://www.w3.org/TR/2008/REC-mobile-bp-20080729/.
2008. – Language 3.2, 5.2.1, 5.2.2

86

http://www.w3.org/TR/2007/REC-voicexml21-20070619/
http://www.w3.org/TR/2007/REC-voicexml21-20070619/
http://www.passani.it/gap/
http://www.passani.it/gap/
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.w3.org/TR/2008/REC-mobile-bp-20080729/

Bibliography

Rajapakse
Rajapakse, Damith C.: Techniques for De-fragmenting Mobile Applications:
a Taxonomy. http://www.comp.nus.edu.sg/~damithch/files/SEKE2008.pdf

2.2

Rho et al. 2006
Rho, Tobias ; Schmatz, Mark ; Cremers, Armin B.: Towards Context-
Sensitive Service Aspects. Version: July 2006. http://roots.iai.uni-bonn.

de/research/logicaj/downloads/papers/RhoSchmatz-OT4AmI06.pdf. In:
ECOOP Workshop 06. 2006 2.6

Schmidt 2006
Schmidt, Douglas C.: Guest Editor’s Introduction: Model-Driven En-
gineering. In: Computer 39 (2006), Nr. 2, 25-31. http://dx.doi.

org/http://doi.ieeecomputersociety.org/10.1109/MC.2006.58. – DOI
http://doi.ieeecomputersociety.org/10.1109/MC.2006.58. – ISSN 0018–9162 4.1

Schmidt et al. 2007
Schmidt, Kay-Uwe ; Stojanovic, Ljiljana ; Stojanovic, Nenad ; Thomas,
Susan: On Enriching Ajax with Semantics: The Web Personalization Use
Case. (2007). http://www.eswc2007.org/pdf/eswc07-schmidt.pdf. – SAP
Research, CEC Karlsruhe and the FZI Forschungszentrum Informatik 2.6

Schwabe and Rossi 1995
Schwabe, Daniel ; Rossi, Gustavo: The object-oriented hyperme-
dia design model. In: Commun. ACM 38 (1995), Nr. 8, 45–46.
http://dx.doi.org/http://doi.acm.org/10.1145/208344.208354. – DOI
http://doi.acm.org/10.1145/208344.208354. – ISSN 0001–0782 5.1.1

Shapiro and Sterling 1994
Shapiro, Ehud ; Sterling, Leon: The Art of PROLOG, 2nd Edition: Advanced
Programming Techniques (Logic Programming). 2nd Edition. MIT Press, 1994
(Logic Programming). – 549 S. – ISBN: 978-0262691635 4.1

Smith 2007
Smith, Kevin: Device Independent Authoring Language (DIAL) / W3C.
Version: 2007. http://www.w3.org/TR/2007/WD-dial-20070727/. 2007. –
Forschungsbericht 3.4.1.2

Stachowiak 1973
Stachowiak, H.: Allgemeine Modelltheorie. Springer, Berlin, Germany, EU,
1973 6.3

87

http://www.comp.nus.edu.sg/~damithch/files/SEKE2008.pdf
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/RhoSchmatz-OT4AmI06.pdf
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/RhoSchmatz-OT4AmI06.pdf
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2006.58
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2006.58
http://www.eswc2007.org/pdf/eswc07-schmidt.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/208344.208354
http://www.w3.org/TR/2007/WD-dial-20070727/

Bibliography

Tilly et al. 2007
Tilly, Károly ; Baranyi, Szabolcs ; Porkoláb, Zoltán: Semantic User Inter-
faces. (2007). www.fluidbusiness.org/events/tilly.pdf 3.3, 6

TM. 2006
TM., GSM A.: Universal Access How Mobile can Bring Communications to All /
GSM Association TM. Version: 2006. http://www.gsmworld.com/documents/

universal_access_full_report.pdf. 2006. – Forschungsbericht (document)

Torgersson 1996
Torgersson, Olof: A Note on Declarative Programming Paradigms and the
Future of Definitional Programming. http://www.cs.chalmers.se/~oloft/

Papers/wm96/wm96.html. Version: 1996. – Edition: Tue Mar 19 11:17:10 MET
1996 3.3

Tran 2002
Tran, Luu: Developing Device Independent Java Applications with JSR 188. In:
W3C Workshop on Device Independent Authoring Techniques (2002). http://

web5.w3.org/2002/07/DIAT/posn/sun-jsr-188.html. – Last Update: Freitag,
13. September 2002 18:29:51 3.1, 8.4

Visciola 2003
Visciola, Michele: Reflections on the user centered design (UCD) perspec-
tive in research on wireless applications. In: Ubiquity 4 (2003), Nr. 8, S. 1–
1. http://dx.doi.org/http://doi.acm.org/10.1145/772541.772542. – DOI
http://doi.acm.org/10.1145/772541.772542 8.1

Visser 2005
Visser, Eelco: A survey of strategies in rule-based program transforma-
tion systems. In: Journal of Symbolic Computation 40 (2005), Nr. 1, 831
- 873. http://dx.doi.org/DOI:10.1016/j.jsc.2004.12.011. – DOI DOI:
10.1016/j.jsc.2004.12.011. – ISSN 0747–7171. – Reduction Strategies in Rewrit-
ing and Programming special issue 4

Visser et al.
Visser, Eelco ; Mens, Tom ; Wallace, Malcolm: Program-
Transformation: Program-Transformation.Org: The Program Transformation
Wiki. Internet. http://www.program-transformation.org/Transform/

ProgramTransformation.. – EelcoVisser - 03 May 2001, 01 Apr 2002 -
TomMens - 9 Apr 2004 - MalcolmWallace - 07 May 2004 4

Vredenburg 2008
Vredenburg, Karel: User-Centered Design. Internet. https://www-01.ibm.

88

www.fluidbusiness.org/events/tilly.pdf
http://www.gsmworld.com/documents/universal_access_full_report.pdf
http://www.gsmworld.com/documents/universal_access_full_report.pdf
http://www.cs.chalmers.se/~oloft/Papers/wm96/wm96.html
http://www.cs.chalmers.se/~oloft/Papers/wm96/wm96.html
http://web5.w3.org/2002/07/DIAT/posn/sun-jsr-188.html
http://web5.w3.org/2002/07/DIAT/posn/sun-jsr-188.html
http://dx.doi.org/http://doi.acm.org/10.1145/772541.772542
http://dx.doi.org/DOI: 10.1016/j.jsc.2004.12.011
http://www.program-transformation.org/Transform/ProgramTransformation.
http://www.program-transformation.org/Transform/ProgramTransformation.
https://www-01.ibm.com/software/ucd/ucd.html
https://www-01.ibm.com/software/ucd/ucd.html

Bibliography

com/software/ucd/ucd.html. Version: 02 2008. – Copyright IBM Corporation
2007 8.1

W3C 2009
W3C: Markup Validation Service. Internet. http://validator.w3.org/.
Version: 2009. – Id: index.html,v 1.94 2008-03-19 18:54:15 ot Exp 9

Wagner and Paolucci
Wagner, Matthias (Hrsg.) ; Paolucci, Massimo (Hrsg.) ; DoCoMo Communi-
cations Laboratories Europe (Veranst.): Enabling Personal Mobile Applications
through Semantic Web Services. Future Networking Lab DoCoMo Communica-
tions Laboratories Europe Munich, Germany, 3.1, 8.4.1

wapreview.com Mitt
wapreview.com: How Web to Mobile Transcoding Should Work | Wap Review:.
internet. http://wapreview.com/blog/?p=516. Version: January Mittwoch, 21.
Januar 2009 14:15:33. – internet blog 2.2

Wayner 2009
Wayner, Peter: A developer’s-eye view of smartphone platforms. http:

//www.infoworld.com/article/09/01/20/03TC-phone-platforms_1.html.
Version: 01 2009. – Internet: 2009-01-20T00:00:00-08:00 9.1

Wei
Wei, Coach K.: AJAX: Asynchronous Java + XML? Internet. http://www.

intranetjournal.com/articles/200508/ij_08_23_05a.html. – Last Update:
8/23/2005 1, 8.2

Wielemaker 2008
Wielemaker, Jan: SWI-Prolog 5.6.60 Reference Manual. Kruislaan 419, 1098
VA Amsterdam The Netherlands Tel. (+31) 20 5256121: Human-Computer Stud-
ies (HCS, formerly SWI), 2008. http://gollem.science.uva.nl/SWI-Prolog/
Manual/ 4.1.4

Wikipedia 2008
Wikipedia: Content adaptation - Wikipedia The Free Encyclopedia. Inter-
net. http://en.wikipedia.org/w/index.php?title=Content_adaptation\

&oldid=258749779. Version: 2008. – Online; accessed 28-January-2009 3.3

Woo and Jang 2008
Woo, Jongwook ; Jang, MinSeok: The Comparison of WML, cHTML, and
XHTML-MP in m-Commerce. In: JSW 3 (2008), Nr. 7, 22–29. http://www.

academypublisher.com/jsw/vol03/no07/jsw03072229.html 5.2.2.1

89

https://www-01.ibm.com/software/ucd/ucd.html
https://www-01.ibm.com/software/ucd/ucd.html
http://validator.w3.org/
http://wapreview.com/blog/?p=516
http://www.infoworld.com/article/09/01/20/03TC-phone-platforms_1.html
http://www.infoworld.com/article/09/01/20/03TC-phone-platforms_1.html
http://www.intranetjournal.com/articles/200508/ij_08_23_05a.html
http://www.intranetjournal.com/articles/200508/ij_08_23_05a.html
http://gollem.science.uva.nl/SWI-Prolog/Manual/
http://gollem.science.uva.nl/SWI-Prolog/Manual/
http://en.wikipedia.org/w/index.php?title=Content_adaptation\&oldid=258749779
http://en.wikipedia.org/w/index.php?title=Content_adaptation\&oldid=258749779
http://www.academypublisher.com/jsw/vol03/no07/jsw03072229.html
http://www.academypublisher.com/jsw/vol03/no07/jsw03072229.html

Bibliography

Yu et al. 2006
Yu, Jin ; Benatallah, Boualem ; Casati, Fabio ; Saint-Paul, Regis:
OpenXUP: an alternative approach to developing highly interactive web appli-
cations. In: ICWE ’06: Proceedings of the 6th international conference on Web
engineering, ACM, 2006. – ISBN 1–59593–352–2, 289–296 11

Zhang et al. 2008
Zhang, Xiaowei ; Cao, Donggang ; Tian, Gang ; Chen, Xiangqun:
Data Prefetching Driven by User Preference and Global Coordination
for Mobile Environments. In: Grid and Pervasive Computing, Inter-
national Conference on 0 (2008), S. 145–150. http://dx.doi.org/

http://doi.ieeecomputersociety.org/10.1109/GPC.WORKSHOPS.2008.35. –
DOI http://doi.ieeecomputersociety.org/10.1109/GPC.WORKSHOPS.2008.35.
ISBN 978–0–7695–3177–9 11

Ziegert et al. 2004
Ziegert, Thomas ; Lauff, Markus ; Heuser, Lutz: Device Independent Web
Applications The Author Once Display Everywhere Approach. In: ICWE 2004,
LNCS 3140 Volume 3140/2004 (2004), July, Nr. 978-3-540-22511-9, S. 244255.
– 0302-9743 (Print) 1611-3349 (Online) 2.2, 3.4, 3.4.1.1

90

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/GPC.WORKSHOPS.2008.35
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/GPC.WORKSHOPS.2008.35

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich meine Diplomarbeit mit dem Thema

Dynamic Web-Based User-Interfaces based on Semantic Descriptions and
Context Informations

selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe.

Hereby, i affirm that the diploma thesis on

Dynamic Web-Based User-Interfaces based on Semantic Descriptions and
Context Informations

was created exclusively by myself and no sources and auxiliary means other than the
ones stated were used. All materials or text which is extracted literally or analogously
from other published work is explicitly stated.

Bonn, den 21/09/2009

Merlin J. Fotsing

91

Index

Container, 34
content selection, 34
Control element, 33

DOM, 30

LAIM, 33
LAIM specification, 35

Semantic User Interface, 33
specification, 34

transformation definition, 39
transformation rules, 39

UI components, 34
UI Specification, 28

Write Once and Run Anywhere, 4

i

	Introduction
	Thesis Scope
	Background
	Motivation
	Scenarios presentation
	User Interface - (LAIM) Translation
	Interaction Architecture Definition
	Client-Server Interactions

	State of the Art
	Delivery Context
	Traditional Web-Application creation methods
	Content Adaptation
	Web Application Frameworks
	Frameworks using existing modeling Languages
	CONSENSUS and the RIML
	W3C and the DIAL
	SIML state

	Frameworks defining own modeling Languages
	The DIWE framework
	HP and the DIWAF

	Applications using Web Services

	Conclusion

	Model Transformations
	Conditional Transformations (CTs)
	Facts
	Rules
	Queries
	Modules
	The Backtracking mechanism

	Model Representation in CTs
	Meta-Predicates Definition
	Node Facts
	Relation Facts

	Transformation Rules in CTs
	Conclusion

	User Interfaces Specification
	UI Functionality
	State of the Art
	Adopted Approach

	Presentation Logic
	One Web Principle
	UI Presentation Specification
	Content Presentation
	UI update Strategy

	Conclusion

	Language for Abstract user Interface Modeling (LAIM)
	LAIM Specification
	LAIM - Attribute Semantics
	Semantic of common UI Attributes
	Semantic of specific UI Attributes

	Conclusion

	Transformation Rules Definition
	Rules Requirements
	Transformation Definitions
	LAIM-Group Transformation
	LAIM-Action , -Output Transformation
	LAIM-Input Transformation

	Conclusion

	Implementation Details
	Model Definition
	Client Side
	Server Side
	Transformation Chain
	Delivery Context Detection
	Meta-Model Definitions
	SUI Meta-Model Definition
	Intermediate Meta-Model Definitions

	Transformation into SUI Facts
	Transformation using CTs
	Transformation into the Presentation Domain
	Translation into the target Domain

	Object-Oriented Principle Simulation

	Evaluation approach
	Testing
	Comparison with the RIML Techniques
	RIML Document Definition
	LAIM Document Definition
	RIML Adaptation Engine
	Prototype Engineering

	Discussion
	Outlook
	Software used by the author

	List of abbreviations
	Bibliography
	Eidesstattliche Erklärung
	Index

