
INTERPRETATION OF WEB SITE USER INTERACTION
AS A BASE FOR CONTEXT-AWARE PAGE ADAPTATION

Pascal Bihler
University of Bonn – Institute for Computer Science III - Römerstr. 164, 53117 Bonn

ABSTRACT

The Web contains immense knowledge, presented mostly in form of HTML pages. Making this information available to
mobile users in a context- and device specific way is one of the main challenges for mobile web usability. Context-aware,
automatic web page adaptation builds upon semantic and structural knowledge, which can go beyond the DOM structure.
The Semantic Shadow concept aims to provide such information about the inherent structural semantic of a web page, as
well as hints about the contentual semantic, in an explicit way. This data, which is managed in a context-aware annotation
layer, can be derived from observed user interaction, as the paper shows. Together with the general approach, basic
methods for deriving fundamental annotations are presented. An exemplary showcase for using the context-aware
annotations for adapting a survey web page is shown, based on the interaction data collected during a user study.

KEYWORDS

Semantic Shadow, Context-Aware Annotations, Usage Tracking, Mobile Web Adaptation.

1. INTRODUCTION

Over the last years, web usage has changed by a lot: In the beginning, the web's user group was compact, but
today, the user groups of a certain web based service are very divers. The trend for context aware usage has
been amplified by the advent of small, high-performance Internet devices like smartphones and netbooks.
Usage context therefore defines another dimension in the web service design space.

Since the user and device variety is increasing more and more, manual adaptation of web pages for every
usage scenario seems not to be a viable approach in the long run. Nevertheless, it is highly desirable that a
service's user interface would be adapted for the specific user needs and device capabilities. As we argued in
[3], an annotation of web page elements with semantic information revealing the structural and contextual
content of the elements to processing algorithms, would support automatic page adaptation and other
context-aware operations. The Semantic Shadow (SemS) concept is a model for such annotations.

The manual generation of such annotations, even if supported by a GUI based tool, is very troublesome
and thus unrealistic, especially for existing pages and web services. This paper proposes another way of
generating semantic annotations by deriving them from web page usage observation. The approach is
motivated by the idea that the user reveals hidden structural information by the way he or she interacts with a
web page.

In the next section, the relevant parts of the Semantic Shadow annotation model are recapitulated. The
main section discusses the options for observing web page user interaction and elaborates the generation of
several annotations from the base set. Based on selected results from a user study, the applicability of the
derivation process is demonstrated and applied to the use case of mobile web page adaptation. A comparison
with related work is followed by a summary and research outlook.

2. THE SEMANTIC SHADOW MODEL

The Semantic Shadow (SemS) [3] concept introduces context-aware annotations on HTML elements. This
allows expressing additional knowledge about web pages, which cannot be encoded into the HTML tags
themselves. We distinguish two different kinds of annotations:

• Annotations describing the content of the annotated element (i.e. some role, meaning etc.).
• Annotations describing the structural semantics of the annotated element (grouping, priority, etc.).
This paper concentrates on the generation and usage of structural annotations.

2.1 Structural Annotations

For the Semantic Shadow concept, a base set for such structural annotations has been defined:
isMemberOf(x,G): The element or group x is member of a semantic group1 named G.
hasPriority(x,P[,G]): The element x has a relative priority P (P being a rational number), compared to

other elements of the page or a specified group G.
receivesKeypresses(x): The element x can receive key presses.
supportsCharset(x,C): The element x receives characters from the given charset C.
hasValueLength(x,N): The value of element x has a length of N characters.
hasAttentionTime(x,T): The users attention is focused for T seconds on the element x.
followsFocus(x,y): The focus of the element x follows the focus of y.
hasFocusFollower(x,y): The focus of the element x is followed by the focus of y.
isSummary(x,Y): x is the summary of Y, whereas Y can be a page element or a group.
inducedBy(vx,vy): The element x has the value vx, if y has the value vy.
induces(vx,vy): If the element x has the value vx, the element y has the value vy.
dependsOn(x,vy): If the element y has the non-default value vy<, x can get a non-default value.
hasDependent(vx,y): If x has the non-default value vx, y also can get a non-default value.
While these annotation types certainly do not cover every possible structural relation, the open design of

SemS makes it easy to extend this base set in future.

2.2 Annotation Model

A semantic annotation (Shadow Annotation) a is defined in SemS as the tuple a = (s,t,p1 … pk,Γ). s denomi-
nates the Subject of an annotation, i.e. the HTML element it relates to. t is the Type of the annotation, p1 … pk
are additional properties, as required by the semantics connected with the type of the annotation. These addi-
tional properties can be scalar values, but they can also reference other web site elements or their values. Γ is
the so called Contextual Confidence of the annotation, generally defined as Γ = (γ,c), whereas c refers to a
context object2 and γ ∈ [0..1] denotes the probability that the given annotation's statement is valid in the
given context. A special case for Γ is ∅ = (1.0,∅), saying that a is valid in every context.

The set of all known annotations is called the Semantic Shadow. This information can be stored and
accessed using an RDF representation (see [3]) making it possible to use existing Semantic Web technologies
for data processing.

3. FROM WEB USAGE TO CONTEXT-AWARE ANNOTATIONS

To extend web sites with context-dependent semantic annotations as described in the previous section, sever-
al methods can be applied: The most basic way is to construct the semantic annotations together with the rest
of the web site while creating the page. A second possibility is to use dedicated annotation tools. A third way,
proposed in this paper, is the derivation of contextual semantics by unobtrusively studying frequent user in-
teractions, as given by the regular use of the web pages. This method requires several steps: Firstly, the usage
of the web resource in question has to be tracked. Secondly, this tracking data has to be summarized for pri-
vacy and manageability issues. Thirdly, meaningful semantic annotations have to be extracted from this ag-
gregated usage data and linked back to the related web site element.

1 A semantic group is a named set of elements on the page.
2 As the requirements for a “context” definition in the Semantic Shadow concept is reduced to the inclusion operation and the URI-based
referencing to a compatible representation, any model supporting those requirements can be used.

3.1 User Tracking Methods

Several methods have been applied to observe the user while he or she is surfing the web and inspecting its
pages. We separate these methods into four categories, each improving the quality (but also the amount) of
tracked user data, but at the same time requiring more complex software and client-server interaction.

3.1.1 Inspecting HTTP Request Logs (L1)
In order to display a web page in the user's browser using the the HTTP protocol a GET or POST request is
send to the server hosting the web page in question. Besides the requested web resource, the request contains
meta information such as the browser's identification string (“User Agent”) and the web site which was
viewed before the browser issued the request (“Referrer”). Traditionally, web servers maintain log files were
they add a line to for every handled request (“Access Log”). In general, the logged dataset contains
information about the user's IP address, the request time, the requested resource, the user identifier (if the
resource was password protected), the user agent and the request's referrer.

3.1.2 Inspecting HTTP Request Parameters (L2)
If a user fills out a form on a web page, the corresponding data is transmitted together with the next HTTP
request. Unfortunately, not the input's field DOM position or ID is used as value identifier, but a dedicated
name attribute of the corresponding form element. Using the page HTML data, the originating input element
can be identified with the name attribute, but unfortunately, this association is not guaranteed to be unique. In
addition, only the final value of the user input can be inspected using this method.

3.1.3 Inspecting Client Events (L3)
The first two methods can be implemented completely on the server side of a web page access. If more
detailed information about the web site usage is desired, events like mouse movements, key presses and focus
shifts have to be tracked on client side. An unobtrusive way to record events triggered by the client browser
is the usage of embedded JavaScript, like done by [2, 14] Every time the user triggers a relevant event, an
embedded script communicates with a proxy to log this event on the server.

3.1.4 Using Dedicated Hardware (L4)
The most sophisticated way of tracking the user's attention when scanning a web page is to follow his or her
eyes while they slide over the browser's page visualization. Using eye trackers as computer input has long
been under research [6, Chapter 20], often for the evaluation of web site interaction [8]. In experimental
settings, an eye tracking hardware can be used to determine the user's points of fixation and scanpaths on the
web page [15]. Concluding from the point of focus to the focus of interest is valid [9], but is not generalizable
[16]. In addition, to create a critical data mass the mining of usage data for web site annotations needs to go
beyond experiments, which requires an eye tracking being part of the standard web usage process.

3.1.5 Comparison of Tracking Methods
The advantage of eye tracking usage to determine user focus time on web elements is its higher precision
compared to an approximation by interpreting the mouse cursor as point of interest (cf. the discussion in [2,
Sec. 6.2]) On the other hand, measurements might still be imprecise, since eye tracking algorithms are very
sensitive to external disorders like caused by the instability of the eyes, blinking and other external factors
[6]. Additionally, eye tracking is a procedure the average user is not used to, so especially in the case where
video data is evaluated, privacy concerns might make the user feel uncomfortable with the usage tracking
method.

For the structural annotations, which are generated using the procedures and concepts presented in this
paper, a detailed view on the user's interaction with the web page is required. On the other hand, in order to
generate resilient context-dependent annotations, interactions from as many subjects as possible have to be
aggregated, so the inhibition threshold of participating in the project should be low. This excludes the use of
dedicated hardware and leaves the options of analyzing server-based and JavaScript generated tracking data.
As usage data collection may raise privacy concerns, the user has to agree to the data collection.

3.2 Deriving Context-Aware Annotations

This section shows how the structural annotations from the base set can be derived from usage data, tracked
as described before3. The information about the usage of web pages is normally stored in sequential lists of
events, traditionally referred to as logfiles. In the following we assume that for every user u viewing a page p
in a context c, a dedicated event list Ev = (ev0,ev1,…,ev(n(v-1))) for this view v=V(u,p,c) is available. A page
view v is defined as the process requesting the web page and interacting with its visualization, until
requesting the next web page or canceling the web browsing session. The total number of events tracked dur-
ing the page view v is referenced as nv = |Ev|. Every event ev consists of a timestamp tev, an event name nev,
the event scope sev (i.e. the web page element x the event relates to) and additional, event specific parameters
πev. The events of an event list Ev are ordered chronologically. All elements of a page p form the set Ap. In
addition, the following set of children of an element x ∈ Ap is defined: O(x) = {y ∈ Ap | (y = x) ∨ (x⇽y)\} ⊆
Ap where (x⇽y) symbolizes that the element x is the direct or transitive parent of y.

In the following, the tracked web page usage information is referenced as L1, L2, L3 and L4, depending
on the different ways of data collection. If not stated otherwise, the event list Ev of a single view v is treated
as input, and reasonable aggregations over all tracked page views (average, weighted average, global extreme
values etc.) have to be made to calculate the overall valid predicates for all x ∈ Ap.

hasPriority(x,P): When deriving the priority from usage data, a simple approach is to assume that for
active elements (e.g. buttons) the importance of an element is directly correlated with the activation
frequency, which can be calculated observing the L3 onfocus or onclick events4 For passive elements (e.g.
paragraphs), the importance of an element can be seen as correlated with the time the user spends his
attention on it and calculated by normalizing this time (as expressed by hasAttentionTime(x,T)) by the
amount of information the element carries (e.g. number of characters).

receivesKeypresses(x): With L3 tracking information, this predicate can be set for every x, where an
event e exists with se = x and ne = onKeyPress. If only L2 tracking information is available, the predicate can
be deduced from the presence of an event with se = x, ne = value, π ≠ ∅. Unfortunately, this method can just
be applied for text input fields in submitted forms and is only a sufficient criterion.

supportsCharset(x,C): This predicate can be determined using the same techniques as described for re-
ceivesKeypresses(x), extended with the concrete analysis of the input value. As soon as a key from a certain
charset is detected, this charset can be flagged as “supported”. When using L3 tracking information (events
onkeypress and onvaluechanged), attention has to be paid to analyze only the final result of an input event
set, because most probably the final input reflects the intended element input semantics better than intermedi-
ate typing errors.

hasValueLength(x,N): To get the length of an input value, input can be tracked as in supportsChar-
set(x,C), and the length of the input can be evaluated. In case of Ev being L2 tracking
information, the maximal submitted value length for the element x is taken. For L3 tracking information, the
same measures as in supportsCharset(x,C) are required.

hasAttentionTime(x,T): The attention time of a certain element x can be tracked using L4 log data by
analyzing the visual focus of the user. The attention time is then assumed as the duration from focusing the
element x until focusing another element or loading another page. If only L3 tracking information is
available, the same algorithm can be applied by replacing the event attentionFocus by the onmousemove.
This seems to be a good approximation [2, Sec. 6.2].

hasFocusFollower(y,x) / followsFocus(x,y): In order to derive these predicates from usage data, L3
tracking information is required. The annotations can be extracted by observing the onfocus event.

induces(vy,vx) / inducedBy(vx,vy): These predicates can only be reasonably derived if a multitude of
page views is analyzed. From the L2 tracking information (and from L3, when event interpretations like for
supportsCharset(x,C) are taken into account), all submitted value tuples can be derived. To reduce the
complexity, only the subset of inductions based on a direct focus switch are considered, filtering the tuples to
those element pairs (x,y), for which followsFocus(x,y) has been declared.

3 Except for isMemberOf(x, G) and isSummary(x,Y), which can better be generated using static HTML document analysis, see the
section on related work for examples.
4 If only L2 tracking information is available, the onclick event can be “simulated” by analyzing the submitted button values.

hasDependent(vy,x) / dependsOn(x,vy): Using the correspondent inducedBy(vx,vy) predicate set, all vy
for which the dependsOn(x,vy) statement applies can be calculated as {𝑣! ∈ 𝑖𝑛𝑑𝑢𝑐𝑒𝑑𝐵𝑦(𝑣! , 𝑣!)|𝑣! ≠!!
𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑉𝑎𝑙𝑢𝑒 𝑦 }. In the same way, hasDependent(vy,x) can be derived from the induces(vy,vx) set.

To calculate the Contextual Confidence value, a reference value (e.g. the page view count in the page
view's context) is stored together with the number of times a concrete annotation is valid in the request
context. The Contextual Confidence Γ of an annotation a in the context c is then expressed by 𝛾 = !(!,!)!∈!!

|!!|

where Vc denotes all page views in a context c and t(a,v) is 1 iff a is valid for the page view v, 0 otherwise.

3.2.1 Context Information
Confidence level calculations for annotations in the Semantic Shadow concept are context related. Therefore,
when generating annotations based on tracked usage information, the context of the corresponding page view
has to be constructed and persisted as well. If no extension of the user's browser in the form of plug-ins is
arranged, only the HTTP transfer data can be examined to build up the page view context, i.e. the connection
information (particularly the user's IP address) and the exchanged HTTP headers.

Using a Web Service as the one provided by IPInfoDB (http://ipinfodb.com) the IP address can be used to
guess the user's location when issuing the page request.5 For more precise data, the W3C Geolocation API
can be used to query the request location from the user using embedded JavaScript while collecting tracking
information. With a reverse geocoding Web Service, the context data can be filled with region and country
information. Based on the calculated geographic origin of the request, the user's time zone can be calculated
and time stamp information can be shifted to match the user's time experience during the page view.

Another important regional aspect of the request context is the user's language. Browsers submit Accept-
ed-languages in the request header, containing an ordered set of language identifiers the user has chosen. To
get information about the user's browsing device, the submitted browser identification string (User-Agent)
can be matched against a database of known devices.

4. EVALUATION AND APPLICATION

To evaluate the derivation of semantic annotations from tracked usage data, web page usage data has been
collected during a one-week study and the structural annotations generated based on this usage data have
been compared to expert knowledge. During this study, the participants were invited to take part in a web
survey about a subject different from this research's one. Apart from the survey's explicit intension, the
implicit interaction with the survey was recorded using the L2 and L3 tracking techniques. The structural
annotations derived from the collected usage data were evaluated and visualized on the rendering of the
corresponding web page to allow a correspondence verification with the semantic structure of the page.

4.1 Deriving Annotations

To demonstrate the effectiveness of the annotation derivation, participants of a user study had to fill out a
short web-based survey. The survey consisted of four pages: On the introductory page, the user was
introduced into the survey's topic and informed about the usage data tracking. In a form, the user entered
“statistical data”, i.e. his age, and gender6, confirmed that he agreed with the data collection for scientific
purposes and entered the survey form by clicking a button.

The other pages contained the actual survey, carried out as a classical HTML page, where every page
element had a unique id. On the last page, the user had the option to leave his email address for participation
in a small gift drawing. The usage of the pages was continuously tracked and logged on the server. After
submitting every page to the server, the survey data is stored in a database to allow statistical evaluation. As a
result of the last form transmission, the user received a “Thank you” page.

5 This data is usually quite imprecise, since IP addresses from a locatable address block might be distributed over a wide area. Also
Internet network technologies like virtual private networks (VPN) or network address translation (NAT) can lead to wrong locations.
6 Data representing context information.

To evaluate the annotation derivation
strategies, the survey included specific
structures:

• Some questions only had to be filled
out if on a precedent question a specific value
was selected.

• Some input values induced other input
values intentionally.

• Some fields required specific input
value formats (e.g. email address).

The user tracking phase was conducted for
seven days. During this time, 999 page visits
from 353 individuals have been captured and
414,353 user events have been recorded using UsaProxy [2]. Using the algorithms presented in the last
section, 13,178 annotations have been generated, 8,462 for the first page, 4,562 for the second page, and 154
for the third page of the survey.7 The resulting annotations exceeding a contextual confidence level of 0.3 for
an unrestricted context and based on more than ten user interaction observations have been visualized on the

corresponding web pages. These visualizations
have been compared to the semantic content
structure of the page and to the results of the
survey. This comparison showed that the
derived annotations fitted well into the
perceived semantic structure of the web pages
(afforded by the visual flow of the survey and
the connections between some form elements
concerning the content of the questions) and
therefore reflected well the inherent structure of
the page (see for examples Figure 1 and Figure
2). Overall, deriving Semantic Shadow
annotations from web page usage data has been
shown to be accomplishable. Nevertheless, for
production scenarios faster execution
environments and an optimization of the
algorithms are required.

4.2 Adaptation for Context Aware Web Access

Using a simple web proxy, several HTML filters have been developed performing simple adaptations on the
web page in order to optimize them for context-aware and especially mobile usage, within them:

Input Field Length Optimization: This adaptation maps the value of the hasValueLength annotation
with the highest contextual confidence in the evaluation context to the size attribute of the corresponding
input element. This adapts the visual size of an input field in a context-aware manner to the most probable
length, giving the user unobtrusive assistance in filling out the web form.

Tab Order Adaptation: The tabindex attribute of HTML allows the definition of an order, in which
input fields are entered when the user presses the tabulator key. Evaluating the hasFocusFollower
annotations of the elements on a page, a context-aware tabulator order is derived. In the case of cycles, the
cycle element occurring first in the web page DOM is selected as starting point.

Priority Based Filtering: To reduce the information overload on small devices, at first page view
elements which are unlikely to be relevant to the user in his current context can be hidden. With SemS
annotations, this adaptation can be implemented by evaluating the elements' hasPriority annotations in
combination with their contextual confidences in the request context.

7 Many participants only filled out the first survey page, which explains the first drop in generated annotations. The last page only
included the option to enter an email address to win a small gift, so only a single input field was presented and tracked.

0.81

0.7
2

0.8

Figure 1. The natural attention sequence afforded by a series of text
input questions is well visible when plotting the contextual confi-
dence values (for c = ∅) of the corresponding hasFocusFollower

annotations

0.84

0.8
6

0.950.54

0.9
2

0.9
6

Figure 2.Contextual confidence values γ > 0.5 (c = ∅) of
hasDependent annotations on selected parts of the first survey

page (# of contributing user interactions > 10).

Content Folding: Another approach is to hide details only and to
show them upon request, known as folding: A small element acts as
representative for a longer passage, which is folded out upon explicit
user request. The isSummaryOf annotation allows to identify such
representatives (usually a headline, but also any other element like
an image can be assigned this annotation).

Paginate: Using the isMemberOf annotation, it is possible to
separate a web page in logical subgroups. This adaptation scans the
page for such groups (e.g. separated news articles), which are
marked using the hasRole annotation as content. To reduce the
amount of elements presented to the mobile user, only one of those
groups is shown at a time.

Auto Fill: Many browsers assist the user by providing selectable
options on free text input fields or pre-fill such fields with values
used before on this page. Since this auto-fill algorithm only works on a per-user basis, the user cannot take
advantage of values entered by other users in a similar context. In addition, most pre-filling algorithms do not
evaluate the values already filled in by the user on the same page. Assuming such values have been persisted
using the induces annotations, the adaptation dynamically extends the user's input to the most probably value
in the current context.

Annotation Embedding: To prepare further client-based adaptations, this “adaptation” introduces new
attributes on annotated elements in the HTML page. This allows performing the context awareness on the
proxy side while leaving the concrete page adaptation to a client-based algorithm.

5. RELATED WORK

Annotation of web pages and its elements with metadata has been described in the last decade by various
researchers. Handschuh and Staab present in [10] a system to annotate existing and newly created web pages
with metadata. The described CREAM system focuses on using annotations to describe semantically, what is
being represented by the HTML elements (named “contentual annotations” in the SemS concept), i.e. they do
not focus on structural annotations. In addition, they do not model any context dimension for their
annotations. Also the SHOE language [11], Ontobroker [7] and SemTag [5] do not model context-awareness.

Hori et al. sketch in [12] a system to optimize web pages for mobile use, driven by RDF-based
annotations using XPath and XPointer expressions in RDF subjects. In this work, only the requesting device's
capabilities are used as context parameter. To the best of our knowledge, the Semantic Shadow concept [3] is
the first approach to model context-awareness alongside with semantic annotations on web page elements.

While the idea of generate those annotations based on user interaction has not been implemented before,
other approaches to automatically create annotations based on a document text or DOM analysis have been
presented: In [5], Dill et al. present SemTag, an application to tag automatically large text inputs. They intend
to bootstrap the process of generating data for the Semantic Web by providing 434 million semantic tags
generated from the analysis of 264 million web pages. In three passes (Spotting, Learning, Tagging) the
algorithm seeks for web page sequences to label, resolves ambiguities using a “Taxonomy-Based
Disambiguation (TBD)” and stores them into a tag database. While the analysis is fully automated, only the
text of the web sites is used as input for the seeking engine.

Going one step further, the approach of Mukherjee et al. [13] also considers spatial locality and
consistence in presentation of the elements in question: A “semantic structure” of the document is derived
from its presentational definition and its content is then set into correspondence with domain ontologies and
lexical databases. This “semantic partition tree” can then be used to enrich the original document with
semantic annotations revealing the observed concepts to external systems. The authors refined their original
approach to use statistical analysis for automated concept identification.

In their work [4] analyzed the HTML document structure to adapt those web pages automatically for
devices with limited visualization capabilities. Similar to the approach of Mukherjee et al., they only focused
on the nested grouping of HTML elements as a semantic structure: The page is iteratively segmented into
smaller content blocks, until they are small enough and thus suitable for an extracted view on a mobile
device. The only “context” considered by the algorithm is the limited device display.

Figure 3. A detail of the survey, adapted for
the visualization on a mobile device with

limited screen size using the Content
Folding technique.

An overview of current content adaptation techniques is provided by Adzic et al. in [1].

6. SUMMARY AND FURTHER WORK

This paper elaborated the idea of deriving context-aware structural semantics on web elements from page
usage analysis. By this, the implicit knowledge a user has about a web page and expresses through his or her
interaction with the web page in a certain context can be made explicit, without requiring a manual data input
by the page editor. The paper distinguished four different levels of gathering web page usage data and
compared them with respect to annotation derivation: request log file inspection (L1), request parameter
inspection (L2), browser event tracking (L3), and eye tracking (L4), while the first two can be executed
solely on server side and the other two require support from the client. Usage data from L2 and L3 has been
found most valuable to generate the context-aware annotations from the Semantic Shadow base set, for which
this paper presented basic derivation algorithms. To demonstrate the applicability of the approach, usage data
on user interaction with an online survey has been collected. From this data, Semantic Shadow annotations
have been derived and compared to the survey design by an expert. This comparison revealed, that the
generated annotations recreate well the structural patterns expressed implicitly in the survey forms. As an
exemplary application, adaptation and optimization of the web pages for mobile use has been show,

In a further work, the current linear approach of user tracking data analysis can be replaced by more
elaborated algorithms, e.g. from machine learning. Also, the determination of the request context associated
with the generated annotation can be further optimized, e.g. by automatically identifying grouping parameters
and by that simplifying the context space traversed during annotation evaluation.

REFERENCES

Adzic, V.; Kalva, H.; Furth, B. (2011), A survey of multimedia content adaptation for mobile devices, Multimedia Tools
and Applications 51(1), pp. 379-396

Atterer, R.; Wnuk, M. & Schmidt, A. (2006), Knowing the User's Every Move - User Activity Tracking for Website
Usability Evaluation and Implicit Interaction, in Proc. of WWW2006.

Bihler, P. & Cremers, A. B. (2011), The Semantic Shadow: Structuring the Web for Adaptations, Electronic Communica-
tions of the ECEASST 37.

Chen, Y.; Ma, W.-Y. & Zhang, H.-J. (2003), Detecting Web Page Structure for Adaptive Viewing on Small Form Factor
Devices, in Proc. of the WWW '03, ACM, New York, NY, USA, pp. 225-233.

Dill, S.; Eiron, N.; Gibson, D.; Gruhl, D.; Guha, R.; Jhingran, A.; Kanungo, T.; Rajagopalan, S.; Tomkins, A.; Tomlin, J.
A. & Zien, J. Y. (2003), SemTag and Seeker: Bootstrapping the Semantic Web via Automated Semantic Annotation,
in Proc. of the WWW '03, ACM, New York, NY, USA, pp. 178-186.

Duchowski, A.T. (2007), Eye Tracking Methodology: Theory and Practice, Springer-Verlag, Secaucus, NJ, USA.
Fensel, D.; Decker, S.; Erdmann, M. & Studer, R. (1998), Ontobroker: Or How to Enable Intelligent Access to the

WWW, in Proc. of the KAW '98 workshop, AAAI Press, .
Granka, L. A.; Joachims, T. & Gay, G. (2004), Eye-Tracking Analysis of User Behavior in WWW-Search, in Proc. of the

SIGIR '04, ACM, New York, NY, USA, pp. 478-479.
Grifantini, K. (2011), Eye Tracking for Mobile Control, Technology Review.
Handschuh, S. & Staab, S. (2002), Authoring and Annotation of Web Pages in CREAM, in Proc. of the WWW '02, ACM,

New York, NY, USA, pp. 462-473.
Heflin, J.; Hendler, J. A. & Luke, S. (2003), SHOE: A Blueprint for the Semantic Web, in Spinning the Semantic Web,

pp. 29-63.
Hori, M.; Kondoh, G.; Ono, K.; Hirose, S.-i. & Singhal, S. (2000), Annotation-based Web content transcoding, Computer

Networks 33(1-6), pp. 197-211.
Mukherjee, S.; Ramakrishnan, I. V. & Singh, A. (2005), Bootstrapping Semantic Annotation for Content-Rich HTML

Documents, in Proc. of the ICDE '05, IEEE Computer Society, Washington, DC, USA, pp. 583-593.
Plumbaum, T.; Stelter, T. & Korth, A. (2009), Semantic Web Usage Mining: Using Semantics to Understand User Inten-

tions, in Proc. of the UMAP '09, Springer-Verlag, pp. 391-396.
Poole, A. & Ball, L. J. (2005), Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and

Future Prospects, in Claude Ghaoui, ed., Encyclopedia of Human Computer Interaction, IGI Global, .
Stiefelhagen, R.; Finke, M.; Yang, J. & Waibel, A. (1998), From Gaze to Focus of Attention, in Proc. of the PUI '98

workshop, pp. 25-30.

