
 

Simulated Presence for 
Location-Aware Studies 

  
  

 

 

Masterarbeit 

 

Krischan Udelhoven 

Steubenstr. 64 – 45138 Essen 

krischan.udelhoven@gmail.com 

 

Bonn, den 4. Oktober 2012 

Rheinische Friedrich-Wilhelms-Universität Bonn 

Institut für Informatik III 

Professor Dr. Armin B. Cremers 





Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und nur mit den
angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut oder dem
Sinne nach anderen Werken entnommen sind, durch Angaben von Quellen als Entlehnung
kenntlich gemacht worden sind.

Bonn, den 4. Oktober 2012





Abstract

Location-aware applications are much more difficult to evaluate than conventional non-
pervasive applications. Usually, it is not possible to restrict the evaluation environment
to make the experiments predictable and controllable, but still realistic enough to provide
significant results. In addition, the evaluation can be very exhausting and time consuming.

For this thesis, a special laboratory setup for the evaluation of location-aware applications
was developed, which maintains the scalability of a field evaluation while keeping the op-
tions and the convenience of a laboratory. The system simulates the geographic location
of study participants by tracking the movement of small toy figures in a model landscape.
The system is a tangible user interface, called Presence Simulator. The simulated presence
is transfered to android smartphones, on which the geographic location, stored in the de-
vice’s operating system, is mocked accordingly. As a result, the evaluated applications are
working with the mocked location data.

To determine the effect of the test environment, the system was evaluated in a comparative
study. In the study, a location-aware task reminder was compared to a conventional to-do-
list. Half of the participants attended to field experiments. The other half used the Presence
Simulator. Both groups where split again into a group that used the location-aware task
reminder and a group that used the todo-list to complete the same tasks. There was no
significant difference in the number of forgotten tasks between the groups in the field study
and the corresponding groups in the Presence Simulator based study.

Überblick

Anwendungen, die den Standort in ihr Verhalten einbeziehen sind sehr viel aufwändiger
zu evaluieren als herkömmliche nicht kontextsensitive Anwendungen. Üblicherweise ist es
nicht möglich die Umgebung, in der eine Anwendung evaluiert werden soll, so zu kontrol-
lieren, dass die einzelnen Experimente unter gleichen und dennoch realistischen Bedingun-
gen wiederholt durchgeführt weden können. Außerdem kann die Evaluation sehr mühsam
und zeitaufwendig sein.

Für diese Arbeit wurde ein System zur Evaluation ortsbezogener Anwendungen im La-
bor entwickelt, das die Skalierbarkeit von im Freien durchgeführten Evaluationen mit den
Vorteilen einer Laborumgebung vereint. Das System simuliert die geographische Position
von Studienteilnehmern, indem es die Bewegung von kleinen Spielzeugfiguren in einer
Modellandschaft verfolgt. Damit ist das Presence Simulator genannte System eine Art Tan-
gible User Interface (dt. anfassbare Benutzerschnittstelle). Die simulierte Präsenz wird vom
System auf Smartphones übertragen, auf welchen dann die im Betriebsystem gespeicherte
geographische Position entsprechend überschrieben wird. Daher greifen auch Anwendung,
die evaluiert werden, auf die simulierten Daten zu.

Für die Arbeit wurde der Presence Simulator in einer vergleichenden Studie evaluiert. In
der Studie wurde ein ortsbasiertes Werkzeug zur Aufgabenerinnerung mit herkömmlichen
Aufgabenlisten verglichen. Die Hälfte der Teilnehmer nahm an Feldexperimenten teil. Die
andere Hälfte benutzte den Presence Simulator. Beide Gruppen wurden weiter aufgeteilt
in eine Gruppe, die die ortsbasierte Aufgabenerinnerung benutzte und eine, die eine Auf-
gabenliste mit den gleichen Aufgaben erhielt. Es gab keinen signifikanten Unterschied
in der Anzahl der vergessenen Aufgaben zwischen den Gruppen der Feldstudie und den
entsprechenden Gruppen, die den Presence Simulator benutzten.





vii

Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution of this Work . . . . . . . . . . . . . . . . . . 3
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related work 7
2.1 Evaluation of Location-Aware Applications . . . . . . . . 7

2.1.1 Field Studies . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Living Laboratory Studies . . . . . . . . . . . . . . 8
2.1.3 Virtual Environment Studies . . . . . . . . . . . . 9

2.2 Tangible User Interfaces . . . . . . . . . . . . . . . . . . . 10

3 The Presence Simulator 15
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Functional Requirements . . . . . . . . . . . . . . 16
3.1.2 Non-Functional Requirements . . . . . . . . . . . 17

3.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 System Architecture . . . . . . . . . . . . . . . . . 17
3.2.2 Network Architecture . . . . . . . . . . . . . . . . 20

3.3 Basis Technology and Frameworks . . . . . . . . . . . . . 22
3.3.1 .NET Framework and C# . . . . . . . . . . . . . . 22
3.3.2 Android . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Server Design Overview . . . . . . . . . . . . . . . . . . . 24
3.5 Server Components . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Location Sources . . . . . . . . . . . . . . . . . . . 26
3.5.2 Detectors . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Map . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.4 Network . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.5 Recorder . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Server User Interface Design . . . . . . . . . . . . . . . . . 43
3.7 Android Client . . . . . . . . . . . . . . . . . . . . . . . . 48
3.8 System Integration . . . . . . . . . . . . . . . . . . . . . . 52

3.8.1 Software Testing . . . . . . . . . . . . . . . . . . . 52
3.8.2 Performance Evaluation . . . . . . . . . . . . . . . 53

4 ShinyNavi - A Comparative Study 55
4.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Field Study . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Presence Simulator Based Study . . . . . . . . . . 57



viii Contents

4.2 ShinyNavi Implemenation . . . . . . . . . . . . . . . . . . 58
4.3 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Summary and Further Work 63
5.1 Summary and Contributions . . . . . . . . . . . . . . . . 63
5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Detector’s Performance Measurments 67

B Data Recorded in the Comparative Study 69

Bibliography 75

Glossary 79



ix

Figures And Tables

List of Figures

1.1 Hardware setup of the Presence Simulator . . . . . . . . . 4

2.1 reactTable – a TUI based on the reacTIVision project . . . 13

3.1 Presence Simulator’s client-server model . . . . . . . . . 18
3.2 Presence Simulator’s network architecture . . . . . . . . 21
3.3 Model-View-Controller architecture . . . . . . . . . . . . 25
3.4 Class diagram of the server’s LS component . . . . . . . 26
3.5 Class diagram of the server’s Detector component . . . . 29
3.6 Marker for Location Source Figures . . . . . . . . . . . . . 32
3.7 Class diagram of the server’s Map component . . . . . . 34
3.8 Map area saved in a PDF file with QR Code . . . . . . . . 36
3.9 Class diagram of the server’s Network component . . . . 38
3.10 Class diagram of the server’s Recorder component . . . . 41
3.11 Video settings GUI . . . . . . . . . . . . . . . . . . . . . . 44
3.12 Location Source management GUI . . . . . . . . . . . . . 45
3.13 GUIs for adjusting Detector settings . . . . . . . . . . . . 46
3.14 GUI for controlling the Map overlay . . . . . . . . . . . . 47
3.15 GUI of the Server Component . . . . . . . . . . . . . . . . 48
3.16 Class diagram of the Android client . . . . . . . . . . . . 49
3.17 Android client’s GUI . . . . . . . . . . . . . . . . . . . . . 50
3.18 Results of Detector performance measurements . . . . . . 54

4.1 Model of the inner city of Bonn. . . . . . . . . . . . . . . . 58
4.2 Close shot of the model of the inner city of Bonn. . . . . . 59
4.3 ShinyNavi and ShinyNaviController . . . . . . . . . . . . 60
4.4 Accumulations of task accomplishments by T participants. 61

List of Tables

A.1 Color based detector performance with one LSF . . . . . 67
A.2 Color based detector performance with two LSF . . . . . 68
A.3 Marker based detector performance with one LSF . . . . 68
A.4 Marker based detector performance with one LSF . . . . 68

B.1 Task distribution of T group participants . . . . . . . . . . 69
B.2 Field Study Recorded Data . . . . . . . . . . . . . . . . . . 70
B.3 Presence Simulator Study Recorded Data . . . . . . . . . 71
B.4 Field Study Final Questionnaire . . . . . . . . . . . . . . . 72



x List of Tables

B.5 Presence Simulator Final Questionnaire . . . . . . . . . . 73



xi

Acknowledgements

I would like to thank the following people and express my appreciation and gratitude for
helping me complete this thesis.
Dr. Pascal Bihler, my advisor, for the numerous inspiring talks we had during the last seven
months and the continuous support and assistance he gave to me. Without him, I would not
have been able to finish this thesis.
Nora Dickel, for her personal support, great patience at all times and especially for proof-
reading and correcting the thesis.
Orhan Sönmez, for helping me conduct the field study.
Last but not least I would like to thank all participants of the study, my fellow students,
friends and family.





1

Chapter 1

Introduction

1.1 Motivation

Location-aware ap-
plications adapt pas-
sively or actively to
the geographic loca-
tion.

Location awareness is a specific form of context awareness where the
geographic location of a device influences an applications function. An
application that is actively location aware adapts its behaviour depen-
ding on the current location (e. g. an application that will forward your
calls when you are out of reach of your office phone). For a passively
location aware application, the location is relevant, but not critical (e. g.
visual effects change, depending on the location). On the hardware
level, there are several advanced technologies like the Global Position-
ing System (GPS) or network based localization to detect the location of
a device. Location awareness is a wide-spread technology and nowa-
days supported by nearly all smart phones and other handheld devices.

In the past, location-
aware applications
were not as suc-
cessful as they could
have been.

Since the early days of third generation mobile and wireless systems
(3G), location-aware applications have been a drive of the mobile op-
erators’ marketing efforts. Location awareness has been presented as
“a crucial tool for providing the right service, at the right time, in the
right locationText” [UMT00] with a lot of opportunities for obtaining
substantial revenues. In 2003, Cambridge Positioning Systems predicted
a world wide sales potential of 12 billion United States dollars for the
segment in 2005 [Cam03]. As we know today, the actual sales in 2005
aggregated far below that estimate.

Nowadays, location-
awareness is an
established technolo-
gy.

Nowadays, the situation has improved. With the release of the iPhone
in 2007 by Apple, and the resulting smartphone revolution that con-
tinues to this day, now roughly one third of the German uses smart
phones [Ips12]. They carry a smartphones wherever they go and use
location aware services like Qype1 or Google’s local2 quite naturally. But
location-aware applications that solve more complex problems than
finding the nearest restaurant or locating our friends are still rare:

1www.qype.com
2www.google.com/+/learnmore/local/

www.qype.com
www.google.com/+/learnmore/local/


2 1 Introduction

Most applications featured in overviews like "21 Awesome GPS and
Location-Aware Apps for Android" by PCWorld [Cas12] from 2012 can
be roughly categorized into applications for sight seeing and for navi-
gational purposes.

There is a lack of
innovative location-
aware applications.

There is a fundamental lack of innovative location-aware applications.
The reason for this is not a lack of new and creative ideas. Already in
1999, Ben Russell described the opportunities of location awareness in
a wonderful techno-romantic vision. According to his headmap ma-
nifesto, smartphones are capable of making ideas like the following a
reality:

• “every place has emotional attachments you can open and save
[...]

• people within a mile of each other who have never met stop what
they are doing and organise spontaneously to help with some
task or other. [...]

• inanimate objects can become more animate (if you know where a
tree is and you know when someone is walking past it you could
make it burst into song)” [Rus99]

It seems that with most location aware applications something must
have gone wrong on the path between idea and realization.

Privacy concerns in-
hibit the development
of location-aware ap-
plications, as well as
missing evaluation
techniques

Often mentioned inhibitors for location-aware applications are unsafe
technology and privacy concerns in general. [Ste04] In my thesis, I am
going to address another inhibitor: The usability of location-aware app-
lications is much harder to evaluate than the usability of conventional
non-pervasive applications. In human-computer interaction (HCI), the
evaluation of non-pervasive applications is an established discipline
with many elaborated techniques and methods. Evaluation of location-
aware applications on the other hand is still a rather untapped research
field.

1.2 Problem Statement

Location-aware ap-
plications are usually
evaluated in expen-
sive field studies,
which are hard to
control.

What makes evaluating location-aware services so difficult? Traditional
evaluation methods and metrics need a controllable test environment,
and thus can only be applied with an extensive effort. Like other per-
vasive applications, location-aware applications are tightly attached to
their environment because they react to context changes. Often, it is not
possible to restrict the evaluation environment in such a way, that tests
are predictable and controllable, but still realistic enough to provide
meaningful results. It might be possible to recreate most indoor envi-
ronments in laboratories where the variables can be controlled while
observing the participants, but when the target environment of the
application is placed outdoors – for example in a city – the costs and
efforts will be immense. Therefore, most researchers state that expen-
sive field evaluations cannot be avoided (e. g. [GBG04], [KSAH04] and
[RCT+07]).



1.3 Contribution of this Work 3

Field studies are
exhausting and time
consuming.

In addition to the suboptimal evaluation environment, field studies are
very exhausting and time consuming. The participants need to be en-
thusiastic and tolerant – especially when it is cold outside or raining.
“The scaling dimensions that characterize [ubiquitous computing] sys-
tems - device, space, people, or time - make it impossible to use tra-
ditional, contained usability laboratories.” [AM00] Therefore, it is im-
portant to design the usability studies as efficient and effective as pos-
sible. For example, in order to compensate the missing tools of a fully
equipped usability laboratory, several techniques like experimenter ob-
servation and pedometer usage were proposed [GBG04]. These tech-
niques facilitate the work a lot but still the major problems are not ad-
dressed: Location aware user studies continue to be exhausting and
time consuming. Because the usage of GPS consumes a lot of energy,
one have to schedule intermediate pauses to recharge the batteries of
the smart phones. In a laboratory setup the devices can be recharged
during the experiments.

The system devel-
oped in the thesis is
an attempt to solve
these problems.

In my thesis I took a different approach. I designed and implemented
a special laboratory setup, which maintains the scalability of a field
evaluation while keeping the options of a laboratory. In order to really
facilitate the researchers work this system should be as reliable and
user-friendly as possible, while still providing the same results as other
methods.

1.3 Contribution of this Work

The Presence Sim-
ulator simulates the
presence of study
participants by track-
ing small human like
figures (LSFs)

For this thesis, a system that facilitates the performance of location-
aware user studies and the evaluation of location-aware applications
running on android smart phones was implemented. In order to benefit
from the options of a laboratory, the system is placed in an indoor en-
vironment. The system simulates the geographic location (presence) of
participants of user studies by using small human like figures. I named
the system Presence Simulator (PS) and the figures Location Source Fig-
ures (LSF).

The system is a tan-
gible user interface.

During a study an LSF is assigned to each participant. The LSFs are
then placed in a model landscape depicting the environment of a cor-
responding field study. The position of the LSFs is tracked by the sys-
tem and converted to the coordinates of the geographic location cor-
responding to the location on the model landscape. The participants
are encouraged to change the position of their LSFs, by directly manip-
ulating, i. e. moving them. Hence the system models a tangible user
interface.

The geographic loca-
tion of smartphones
is mocked by the
system.

For each LSF, the system generates a stream of geographic location co-
ordinates. This stream is transmitted via a wireless connection to the
smart phone of the participant the LSF was assigned to. On the partic-
ipants smartphone a receiver application is continuously mocking the
device’s geographic location according to the streamed location coordi-



4 1 Introduction

Figure 1.1: The hardware setup of the Presence Simulator - A system
developed in this thesis to simulate and track the user’s presence in a
model landscape.

nates. This happens transparently to the application that is evaluated.
Location coordinates simulated by the Presence Simulator are similar
to the ones from the device’s GPS receiver and thus the whole Presence
Simulator is a kind of a GPS receiver simulator.

The hardware setup
consist of a model
landscape, a web
cam mounted above
the landscape,
a computer with
speakers, smart
phones and a W-
LAN router.

FThe hardware construction of the Presence Simulator built in this
work is shown in Figure 1.1. The model landscape is placed on a ta-
ble. In this case the landscape is just a map, but it is also possible to
build a three dimensional model. Of course, that would be much more
time consuming but it would also make the setting more realistic. On
top of the map a playmobil R© figure, serving as a LSF, is placed. The
figure is 7.5 centimeters high and originally a children’s toy. 1.5 me-
ters above the center of the table, a web cam is attached to a wooden
construction. The lens of the camera gives a top-down perspective of
the map. The battens of the construction are tightly fixed to the table
with cable ties. The web cam is connected to the computer running the
Presence Simulator server software. In the background of the picture a
speaker is visible, which is used to simulate traffic and other ambient
noises. The wireless local area network (LAN) router, which is used to



1.4 Thesis structure 5

transmit the streams of location coordinates from the computer to the
smart phones lying on the table, is placed on the speaker.

The Presence Simu-
lator was compared
to a field evaluation
in a comparative
study.

In order to compare the system’s performance with traditional field
evaluation methods, and thus determine the effect of the test environ-
ment, a comparative evaluation was made. For this purpose, a location-
aware android application named ShinyNavi was developed for evalu-
ation. The application is a navigation system for pedestrians. Orhan
Sönmez, a student from the computer science department of the uni-
versity of Bonn, helped me in carrying out parts of the study. Sönmez
is currently working on his bachelor’s thesis about the effectiveness of
location-aware task reminder tools. Therefore a task reminder was in-
tegrated by him into the navigation system and also evaluated.

A between-
participants study
design was used.

The participants of the study were split into two groups: One group
evaluated the application by using the Presence Simulator. The sub-
jects of the other group participated in a field evaluation. To avoid
carryover effects, a between-participants study design was used. The
results of the two groups are compared in Chapter 4 in order to an-
swer the question whether there exists – for a specific study design –
a significant difference between the results of evaluations based on the
Presence Simulator and traditional field evaluations.

1.4 Thesis structure

Short description of
the five chapters of
the thesis and the
appendix.

This thesis is devided into in five chapters. At the end, there is an ap-
pendix with all performance measurements and also the data that has
been collected during the comparative study discussed in Chapter 4.

• Chapter 1 served as an introduction by describing my motivation
for this work, the importance of the field of location-aware soft-
ware evaluation and the problems current evaluation approaches
are facing. Furthermore, the steps I pursued in this work in order
to overcome these problems are introduced.

• Chapter 2 describes currently available evaluation methods for
location-aware software applications in general. Particular em-
phasis is placed on three different evaluation approaches: Tra-
ditional field studies which are situated outside, studies where
the participants act in a purely virtual environment, and stud-
ies taking place in a physical model environment. For each ap-
proach several sophisticated tricks and techniques to facilitate the
researchers work are introduced. As the Presence Simulator is a
tangible user interface the current state in that research field is
also described.

• Chapter 3 discusses the Presence Simulator system that has been
developed in this thesis. Software design and the actual and im-
portant parts of the actual implementation are described. The
chapter starts with an overview of the system’s architecture to
continue with a discussion of each component in detail. At the



6 1 Introduction

end of the third chapter, performance measurements and the unit
tests which were implemented to maintain the software quality
of the system are presented.

• Chapter 4 presents the comparative study that has been executed
in this thesis in order to evaluate the Presence Simulator system.
First, the location-aware application that has been implemented
for the study is described, then the study design is presented and
the study results are discussed.

• Chapter 5 discusses the main conclusions of this thesis by sum-
marising the work completed, by discussing how the research
questions have been answered and by detailing future directions
to extend this research area.



7

Chapter 2

Related work

2.1 Evaluation of Location-Aware Applications

Location-aware ap-
plications can be
evaluated in the field,
in living laboratories
or, in virtual environ-
ments.

In the last years, various methods and techniques to evaluate location-
aware applications have been proposed and compared to each other.
They can be roughly divided into three categories: traditional field
evaluations, approaches that simulate the target environment by cre-
ating a living laboratory, and approaches that evaluate location-aware
applications in a purely virtual environment (e. g. based on computer
game engines). Studies placed in a living laboratory are more abstract
to the participants than field studies and pure virtual environments
raise the level of abstraction even more. For each category, a research
paper will be discussed in the following three subsections.

2.1.1 Field Studies

Evaluation in the
field is the traditional
approach.

Location-aware applications are traditionally evaluated and tested in
field experiments. Field experiments are quantitative experimental
evaluations which are carried out in a field and, depending on their
size and design, can grow up into a real field study. In their paper
“Using Field Experiments to Evaluate Mobile Guides”, Joy Goodman
et al. describe the advantages and disadvantages of field experiments
as compared to other evaluation methods. They also present a spe-
cific method of conducting field studies and discuss several evaluation
measurement techniques and tools. [KSAH04]

Real users are in-
volved and the envi-
ronment is as realis-
tic as it can be.

In comparison to evaluations conducted by experts, field experiments
involve actual users. This is why, according to Goodman et al., the re-
sults of these studies are more reliable. When compared to studies in
a laboratory setting, field experiments benefit noticeable from the par-
ticipants exposure to the real environment. “Aspects such as lightning
levels, weather, the effects of walking, the appearance of landmarks
in real life and the effectiveness of location-sensing systems can have
unpredictable effects on the usability and effectiveness of a device.”



8 2 Related work

[KSAH04]. Goodman et al. conclude that the only way to really find
out how a location-aware application will work is to test it in its target
environment.

Field studies are
exhausting, time con-
suming and the envi-
ronment is difficult to
control.

According to Goodman et al., field studies are “much harder and more
time-consuming than lab experiments” [KSAH04], but they found out
that they are not substantially more difficult. The biggest challenge
seems to be the controlling of confounding variables, because envi-
ronmental variables like traffic or weather conditions are out of the
researchers control. Careful scheduling and waiting for the right con-
ditions before starting an experiment might help, but this would con-
sume a lot of time and resources. Goodman et al. state that avoiding the
variation of these variables would lead to unrealistic results and thus
a better approach which also avoids the mentioned difficulties is to let
the variables vary across conditions.

Goodman’s method
of running field stud-
ies.

To obtain a quantitative evaluation, the location-aware application to
be evaluated is compared to another method (e. g. navigation with a
navigation system is compared to navigation with a standard paper
map). According to Goodman et al., the comparison can be done using
between-groups, within-groups or mixed study designs. In the method
proposed by Goodman et al., participants of the study are followed
by an experimenter while completing a predefined list of tasks. The
experimenter observes and documents the participant’s behavior. After
a participant has completed the list of tasks, he or she is questioned
about the experiment using a questionnaire or interview.

The experimenter is responsible for taking several evaluation measure-
ments during an experiment. Goodman et al. propose to use a range of
different quantitative and qualitative measurements. Some measure-
ments proposed by the authors are time, errors, perceived workload,
comfort, and user comments and preferences.

A clear method can
facilitate carrying out
field studies.

Goodman et al. conclude that carrying out field evaluations can be
simplified by defining a clear method. By using the method presented
in the paper work will be facilitated and the study will produce a lot of
quantitative and qualitative results.

2.1.2 Living Laboratory Studies

A living laboratory is
a one-to-one simu-
lation of a particular
environment.

A living laboratory is a life-size simulation of a particular environment.
Living laboratories are closely related to the approach I will take in
my thesis. However, due to the effort and the large area needed to
construct the one-to-one model, living laboratories have only been used
for applications designed for indoor use.

Kjeldskov et al. eval-
uated a living labora-
tory setup.

In their paper “Is it Worth the Hassle? Exploring the Added Value
of Evaluating the Usability of Context-Aware Mobile Systems in the
Field” Jesper Kjeldskov et al. compare a field evaluation with a liv-



2.1 Evaluation of Location-Aware Applications 9

ing laboratory evaluation [KSAH04]. They also present a special video
camera device for data collection in field studies.

Kjeldskov et al. eval-
uated an electronic
patient record sys-
tem that is used in
hospitals.

As an example, an electronic patient record system called MobileWard
was evaluated. For the purposes of the laboratory evaluation, three
rooms of a hospital department have been rebuild inside a usability
laboratory. The field evaluation was carried out in the corresponding
hospital. In the laboratory, data was collected using ceiling-mounted,
high quality audio and video recorders, while in the field a portable
configuration was used.

The comparative
study indicated that
living laboratory
based studies can
produce similar re-
sults as field studies
but can be carried
out much faster.

In a comparative study, more usability problems were detected in
the laboratory than in the field environment. In both environments
context-aware problems were revealed. Carrying out the field eval-
uation took twice as long as the laboratory study (34 man-hours vs.
65 man-hours). Kjeldskov et al. concluded that a field evaluation
has no advantages compared to a realistic laboratory study and “the
lack of control undermined the extendibility of the field evaluation”
[KSAH04]. However they do not claim their results to be general, be-
cause applications in other domains may have different characteristics.

2.1.3 Virtual Environment Studies

O’Neill et al. built a
virtual system for
the evaluation of
applications.

In their paper “Rapid User-Centered Evaluation for Context-Aware
Systems” [OLMD07], Eleanor O’Neill et al. describe a system that uses
the 3D graphics engine of the game Half Life 21 to build a purely virtual
platform for the evaluation of location-aware applications.

The virtual environ-
ment is completely
controllable and
all actions can be
recorded.

The platform developed by O’Neill et al. addresses the problems of
field studies and tries to overcome them. By having a totally control-
lable virtual environment, all independent variables can be set freely.
Thus, it is possible to produce exactly the same environment parame-
ters for each experiment. Additionally, all the participant’s movements
and reactions can be recorded, which is obviously hard to achieve in a
field study. Also the problem that field studies are exhausting for par-
ticipants and researchers is solved, because all persons involved can
make themselfs comfortable in front of the computers.

According to O’Neill
et al., the high level
of abstraction is not
a problem.

One might argue that the high level of abstraction inherited in the sys-
tem distorts the study’s results but accordant to the authors the “simu-
lated environment is sufficiently realistic to accurately convey changing
physical and social context to the user through the virtual representa-
tion of the environment.” [OLMD07]

Users navigate an
avatar through a
3D world, that is
rendered by the Half
Life 2 engine.

The user front-end of the platform consists of an interactive context
simulator, that allows the user to navigate an avatar in a virtual envi-
ronment via mouse and keyboard. The environment is defined with the
help of an extended version of the Half Life 2 modeling tool. Within the

1source.valvesoftware.com/

source.valvesoftware.com/


10 2 Related work

extended modeling tool, it is possible to place different types of sensors
in the virtual world. The sensors are activated at run-time by user activ-
ity and movement. On sensor activation, the system generates a mes-
sage with relevant context data, which is then passed to a Java proxy
gateway. The proxy mediates between the virtual environment and the
application that is evaluated.

Virtual worlds of al-
most any size are
possible and devel-
opment is less time
consuming.

The engine allows a flexible usage of sensors, because there is no re-
striction in expense and logistics like in real environments. According
to the authors, with a bit of practice it is possible to rebuild 3D worlds of
almost any size in a short time. The platform allows multiple services
to be connected to the same virtual world. According to O’Neill et al.,
the platform leads to an improvement in productivity through “shorter
test development life-cycles, more targeted and relevant user evalua-
tion, a low-cost infrastructure and the facility for on-line user testing”
[OLMD07].

2.2 Tangible User Interfaces

TUIs are an modern
alternative to WIMP
interfaces. Charac-
teristics of TUIs are
listed here.

For a long time human-computer interaction (HCI) was dominated by
the usage of mouse and keyboard to interact with windows, icons,
menus and pointers (WIMP). Since the early 1990s, interfaces were de-
signed that differ from traditional WIMP interfaces. One type of these
interface forms are tangible user interfaces (TUI). With TUIs, humans
interact with computers by manipulating physical objects. According
to the TUI’s pioneers, Hiroshi Ishii and Brygg Ullmer, TUIs can be char-
acterized as follows:

• “Physical representations (rep-p) are computationally coupled to
underlying digital information (model).” [UI00] For example, in
the Presence Simulator system the physical location source fig-
ures are coupled with the digital location source model.

• “Physical representations embody mechanisms for interactive
control” [UI00]. For example, by moving the LSFs, the location
source model is controlled.

• “Physical representations are perceptually coupled to actively
mediated digital representations (rep-d).” [UI00] In the Pres-
ence Simulator’s server the LSFs are visualized as markers on a
map. Depending on the location-aware application that is evalu-
ated, the LSFs might also be visualized on the participants smart
phones.

• “The physical state of interface artifacts partially embodies the
digital state of the system.” [UI00] In the Presence Simulator sys-
tem, there is only one type of physical artifacts and the system
interprets the spatial location of each of them separately. The re-
lation between the LSFs does not matter. This characteristic be-
comes important when having more complex TUIs with different
physical artifacts.



2.2 Tangible User Interfaces 11

TUIs have several
advantages over
WIMP interfaces.

Orit Shaer and Eva Hornecker present a list of strengths of TUIs in their
book “Tangible User Interfaces: Past, Present, and Future Directions”
[SH09]. One of the strengths is that TUIs support face-to-face collabo-
ration by providing multiple access points to the objects and having the
manipulation of objects observable and repeatable by others. Another
strength is that humans are used to change their environment by ma-
nipulating physical objects. “Children learn abstract concepts through
bodily engagement with tangible manipulatives.” [SH09] By using a
TUI, the user’s thinking remains in the physical world and does not
have to move to an abstract digital level, which is especially important
for the Presence Simulator very important since the particularly physi-
cal action of walking though an outdoor environment is simulated.

TUIs have a scaling
problem and can be
tiring.

Of course, TUIs also have limitations and Shaer and Hornecker list
some of them, too. For example, most TUIs cannot be scaled up to solve
complex problems with a lot of different objects, data and parameters.
At some point the TUI will simply be too big to be used. Another limita-
tion is the fact that TUIs are physical interfaces which require the user
to perform physical actions and thus the user will fatigue. The point
of depletion can be deferred by designing the objects with human er-
gonomics in mind, but still, depletion will probably occur earlier than
in a WIMP interface. [SH09]

Tracking systems
track the movement
of physical objects.

One specific type of TUIs are tracking systems. Tracking systems con-
trol virtual processes like a traditional computer mouse or the cursor
keys of keyboards do. Unlike them, tracking systems are no general
input devices, but designed for a specific purpose. For example there
are systems for doctors to simulate difficult surgeries, or for engineers
to simulate the state of work pieces. [Sta11] Several methods can be
used to identify and track physical objects. Color detectors like imple-
mented in the Presence Simulator and form detectors – e. g. QR code
detectors, as described in Section 3.5.3 – are often used. But also non
visual methods like RFID-chips (Radio Frequent Identification) are an
option. For example Karotz, an artificial rabbit used in children’s wards
for social interaction has an RFID-sensor to react to artificial carrots and
other objects with integrated RFID-chips. When a person that carrying
an RFID-chip enters the sensor’s range, Karotz can automatically send
an email or an SMS. [Blo11]

The Marble Answer-
ing Machine was a
seminal TUI.

Durrell Bishop’s Marble Answering Machine (MAM) was an early TUI,
designed in 1992. In fact, it was one of the first interfaces that interlinks
the physical and the digital world by means of a TUI. [SLCJ04] The
MAM was a fully functional telephone answering device. Phone calls
received by the machine were physically represented by a marble. The
voice message itself was digital, but the system stored the association
of a specific voice message and a specific marble. Marbles had different
colors so that the user could distinguish them. When the caller hung up
and the telephone connection was interrupted the marble was ejected
by the system. It rolled into a small hollow, which served as a marble
gathering place. The hollow was open to the user, so he or she could



12 2 Related work

pick up a marble. To replay the message associated with the marble,
users could place the marble in another hollow. This replay hollow had
only space for one marble. In order to delete a message, the associated
marble could be dropped into a hole. Although in 1992, there were
also other TUIs available, the MAM was a pioneer and is referenced in
nearly all introductions to TUIs.

Tangible bits bridge
the gap between
the virtual and the
physical world.

In 1997 Ishii and Ullmer formulated a vision for TUIs in the paper
“Tangible Bits: Towards Seamless Interfaces between People, Bits and
Atoms”. They were “inspired by the aesthetics and rich affordances
of [...] historical scientific instruments” [IU97] and regret that these
“beautiful artifacts” [IU97] have been replaced by personal computers.
Computers provide a very general and mostly graphical interaction in-
terface and thus the skills and work practices with physical objects that
have been developed by humans during their evolution are mostly ne-
glected. In their paper Ishii and Ullmer present several design projects
that illustrate the tangible bits concept.

The metaDESK is a
project for demon-
strating and testing
new TUIs.

One of the projects Ishii and Ullmer designed at the MIT Media Lab
in Cambridge is named metaDESK. The system is an interface plat-
form for the testing and demonstration of new tangible interaction tech-
niques. Like the Presence Simulator developed in this thesis, it consists
of a desk with movable objects (tangible bits) placed on the surface with
a system tracking their location. Unlike the Presence Simulator, the
metaDESK system was designed for a more general purpose and there-
fore is much more expensive to build. For example, the desk serves as a
projection surface for a beamer, which is attached to the system’s com-
puter and placed under the desk. Depending on the users actions, the
projection can be changed. The tangible bits are sensed "by an array of
optical, mechanical, and electromagnetic field sensors" [IU97].

The metaDESK is a
TUI allowing users to
navigate through a
map.

In their paper “The metaDESK: Models and Prototypes for Tangible
User Interfaces” Ullmer and Ishii presented a sample application for
the metaDesk called “Tangible Geospace”. [UI97] In this application, a
map that is projected on the desk can be panned or rotated by moving
a tangible bit that looks like a model of a building and is named Ph-
icon, on the desk’s surface. The map can be zoomed by placing another
Phicon in relation to the first one on the desk. An arm-mounted dis-
play shows a three-dimensional model of the map’s area the display is
showing. With a fiber-optic bundle named “passive lens”, additional
information of mapped regions can be displayed by moving the device
to a specific region.

The reacTIVision
project is a frame-
work for the tracking
of fiducial markers
attached to physical
objects.

The reacTIVision2 software is a project that resembles the metaDESK
project. The first version was developed in 2005 by Martin Kaltenbrun-
ner at the university Pompeu Fabra in Barcelona. reacTIVision is re-
leased under the GPL license. The sytem is decribed by Kaltenbrun-
ner in the paper “reacTIVision: a computer-vision framework for table-

2reactivision.sourceforge.net/

reactivision.sourceforge.net/


2.2 Tangible User Interfaces 13

Figure 2.1: reactTable is a digital musical instrument and an application
of the reacTIVision project. Fiducial markers at the bottom of the objects
on the table are tracked by a camera underneath the table. [rea05].

based tangible interaction” [KB07]. A system that uses the reacTIVi-
sion software consists of a table with a special surface translucent for
infrared light, like it is shown in Figure 2.1. Under the table, a camera
and a projector is placed so that the view-port of both covers the en-
tire table. The camera is able to receive light in the infrared range, so
it can see through the table’s surface. The projection from underneath
the table can be seen from above. Users can move and rotate physical
objects on the surface of the table. A two-dimensional fiducial marker
is attached to the bottom of the objects so that the camera can observe
it. The markers were designed with the help of an evolutionary algo-
rithm. the reacTIVision software is able to track the markers position
and there orientation in a real time video stream. Furthermore, the soft-
ware is also able to detected finger tips on the table’s surface.

Many projects are
based on the reac-
TIVision system.

Many projects are based on the reacTIVision system. For example
ToyVision, a software toolkit for the prototyping of tangible games
[MCB12] or SoundStage, a surround sound mixer with a tangible inter-
face. The goal of SoundStage was “to make ambisonic surround sound
accessible and fun for kids.” [Mur11]. A lot of other examples can be
found at reacTIVision’s vimeo video channel3.

The Presence Sim-
ulator is not based
on reacTIVision be-
cause building the
system is too expan-
sive.

The reacTIVision seems to be the perfect basis technology for the imple-
mentation of the Presence Simulator. It is has already been field-tested
and proven capable of tracking objects precisely and reliably. How-
ever, its rather extravagant setup comes at a high price: Depending on
the size of the system and the quality of its components, it can easily
cost several thousands of Euros. Excluding pre-existing components

3vimeo.com/channels/reactivision/

vimeo.com/channels/reactivision/


14 2 Related work

such as the table and the computer, I spent a total of 56.11 Euros on my
prototype.



15

Chapter 3

The Presence Simulator

In this chapter the
Presence Simulator
is discussed.

In this chapter, the Presence Simulator system that has been developed
for this thesis is described in detail. Already at the very beginning of
the work on my thesis, it was clear that the implementation of the Pres-
ence Simulator had to meet several requirements. These requirements
are described in the next section. In the subsequent sections, the soft-
ware design of the system is described, starting with a top level view of
the whole system. Next, the client and the server tier are discussed by
presenting a top level view of the whole tier and then focusing on the
components in the lower levels. The last section of the chapter focuses
again on the Present Simulator’s requirements, by discussing how they
were met in the implementation. Also, some performance measure-
ments and the discussion of the unit tests that sustain software quality
are given in the last section.

The source code
can be found on the
CD-ROM.

The source code of the Presence Simulator is released under the MIT
license. It can be found on the CD-ROM attached in the back of this
thesis and also under the link listed below the attached CD-ROM.

The Presence Sim-
ulator has two types
of users, namely re-
searchers and study
participants.

Users of the Presence Simulator can be divided into two groups. Re-
searchers on the one hand are the primary users of the system. They
set up the simulator by building the physical model landscape, mount-
ing the webcam and tweaking the settings provided by the server’s
GUI described in Section 3.6. On the other hand, the participants of the
location-aware study are also users of the system. They use the tangible
interface by moving the LSFs in the model landscape. Of course their
using of the evaluated smartphone application is also affected by the
Presence Simulator system. Which makes the participants secondary
users in this case. In this chapter, when the users are mentioned, in
most cases the researchers are meant. In all other cases it is explicitly
stated.



16 3 The Presence Simulator

3.1 Requirements

Requirement lists are
outdated, but suit-
able for the purposes
of a thesis.

In this section a list of requirements for the implementation of the Pres-
ence Simulator is presented. Providing such lists is a traditional way
of documenting software requirements, but has gone out of fashion in
modern analysis. [KE04] A more recent alternative to requirement lists
are user stories. User stories describe in in a short story what the user
does with the system as part of his or her job. However, developing
software for the purposes of a computer science thesis is a unique set-
ting where most constraints of business software development do not
apply. For example, the requirements usually do not change during the
processing period of the thesis. Therefore, a requirement list suits quite
well to describe the needs of the Presence Simulator. Later, in Section
3.8, the list presented here will be revisited again to discuss how the
implementation satisfies the requirements.

Functional require-
ments describe what
to do, non-functional
requirements, how to
do it.

Functional requirements describe the interactions between the system
and its surroundings, independent from its implementation. Func-
tional requirements describe what the system must do. Non-functional
requirements focus on the system it self, by defining how the functional
requirements should be executed.

3.1.1 Functional Requirements

1. The system should be able to detect the position of little toy fig-
ures (LSFs) placed in a model landscape as pixel coordinates in a
picture that is captured from above the model and is showing the
whole landscape.

2. The system should be able to distinguish multiple LSFs situated
in the same model landscape.

3. Users should be able to define a geographic area that corresponds
to the model landscape.

4. The location of the LSFs in the model landscape should be
mapped to the corresponding geographic coordinates in the de-
fined geographic area. The mapping should be executed continu-
ously, resulting in a stream of location updates for each LSF.

5. Users should be able to assign a specific LSF to an Android de-
vice. After the assignment, the Android device should be in-
formed about each location update of the assigned LSF.

6. Users should be able to cancel assignments that have been made
between LSFs and Android devices.

7. Location updates should be transmitted over the air to the An-
droid device.

8. Whenever the Android device receives a new update the device’s
system location should be set to the coordinates specified within
the update. This update mechanism should also be active when
another application is running (e. g. the application to be evalu-
ated).



3.2 Design Overview 17

3.1.2 Non-Functional Requirements

1. Reaction time should be fast. That means, a participant should
not be able to notice a delay between his or her action of moving
an LSF and the smartphone’s response in changing the location.

2. Spatial resolution should be high. That means that even small
changes of the figures position should result in changed geo-
graphic coordinates.

3. The simulated presence should be accurate. That means that the
geographic coordinates corresponding to an LSF should be the
ones that one expects when the figure is placed on a certain po-
sition. Also the coordinates should not fluctuate while the LSF
stands still.

4. The update rate should be at least one update per second (the
iPhone 4 – one of the best selling smartphones – has an update
rate of up to 2Hz [Bro07]).

5. The size of the model landscape should be scalable. A landscape
measuring 1 by 2 meters should be possible (which is about the
size of standard desk at the university of Bonn).

6. LSFs the size of playmobil R© figures (eight centimeters high and
four centimeters wide) should be tracked reliably by the system.

7. The system should be easy and convenient to use for both re-
searchers and study participants.

3.2 Design Overview

3.2.1 System Architecture

The Presence Sim-
ulator is based on a
client-server model.

The implementation of the Presence Simulator is based on a client-
server model. Client-server models partitions tasks in an distributed
application between service providers, called servers, and service con-
sumers, called clients.



18 3 The Presence Simulator

X:N510px
Y:NNN42px
Latitude:NNNN50.95
Longitude:NNN6.97

SERVER

CLIENT

Figure 3.1: Model of the Presence Simulator system, showing a tangible
user interface on the left side and the server and the Android client on
the right side. The server is processing the webcam’s video stream and
the client is receiving location updates from the server.

Client-Server model

CLIENT-SERVER MODEL:
Systems based on the client-server model are two-layered with a
specified interface between the layers. Client-Server models can be
found on different levels, for example in computer networks as is
case with the Presence Simulator, but also in a software running on
only one device.
In the 1990s, client-server systems gained popularity at the same
time as object-oriented programming languages rose. The servers
in the 1990s were usually relational databases, offering data services.
Nowadays, there are also other services offered by client-server sys-
tems. Still, in most cases the client is responsible for the user in-
terface. But depending on its performance (thin versus fat client),
additional application code can be executed by the client. A major
advantage of the client-server model is that these systems are easy
and fast to develop and usually also achieve decent performance.
On the other hand, they are not very scalable, difficult to maintain,
and provide a single point of failure. [Fow02]



3.2 Design Overview 19

The server tracks
the location of the
LSFs and transfers
their coordinates
to a client software
running on Android
smartphones.

The client-server model implemented in this thesis is depicted in Fig-
ure 3.1. On the left side of the figure, a TUI in form of a model land-
scape with an LSF placed in it can be seen. For the sake of simplicity,
only one LSF is shown, but the system is capable of handling more
than one. A participant of a study would stand next to the landscape
and move the LSF. A webcam is mounted above the model landscape,
pointing straight downwards. The webcam is attached to a computer.
On the computer, the Presence Simulator server software is running.
The server software is responsible for analyzing the video stream from
the webcam in order to detect the positions of the LSFs and map these
positions to geographic coordinates. The server is offering the streams
of geographic coordinates as a service in the LAN. The client is an An-
droid smartphone and is connected to the server via a wireless network
connection. It consumes the updates of geographic coordinates from
the server, by setting the geographic location stored in the device’s An-
droid system accordantly.

The LSFs are
tracked passively
only by their appear-
ance in the web-
cam’s video stream –
no infrared emitters
are used.

In the exposé of my thesis, I described the Presence Simulator system
slightly different. When I began to work on my thesis, I had the inten-
tion to attach an active infrared emitter to the LSFs, pointing upwards
in the direction of the webcam. Normal webcams have an infrared fil-
ter mounted in frond of the sensor, therefore this filter would have been
removed and replaced by an infrared-only filter. As a result, recogniz-
ing the LSFs in the webcam’s video stream would have been quite easy.
However, distinguishing different figures would have been harder, be-
cause all emitters would look similar on the video frames. Also, setting
up the whole system would have been much more complicated. For
example, in addition to the infrared sensors, batteries would have had
to be attached to the LSFs, making the figures appear less human. For-
tunately, it turned out that image recognition on common non infrared
video streams performs well enough for the demands of the Presence
Simulator.

It would have been
an option to split
the server into two
separate tiers.

The Presence Simulator server mainly consists of two parts: the image
recognition part and the part offering the location service in the net-
work. So, it might have been a good idea to split the server into two
separate components. In the context of multi-layered architectures, the
components are usually called tiers. The client-server architecture is
a two-tier architecture, whereas the proposed architecture would have
been a three-tier architecture.



20 3 The Presence Simulator

Multi-tier architecture

MULTI-TIER ARCHITECTURE:
Multi-tier architectures are a generalization of the client-server ar-
chitecture. The terms tier and layer are often used synonymously. A
tier is an independent component in a distributed application. The
motivation in having more layers is to reduce complexity by using a
divide and conquer approach. To solve tasks from higher levels, ser-
vices from lower levels are used. One level should only communicate
with services from the next lower level, because otherwise complex-
ity would increase a lot and the system would soon be unmaintain-
able. An example for the use of a three-tier architecture in computer
networks is the extension of the client-server architecture by adding a
firewall between client and server to increase security. One problem
of multi-tier architectures is that the more layers are implemented,
the worse the performance usually is. [Fow02]

Three reasons for
using a client-server
architecture instead
of a three-tier archi-
tecture.

There are three reasons for implementing the Presence Simulator with
a client-server architecture and not with a three-tier architecture:

• The additional layer would result in a performance drawback due
to communication overhead, which is critical because the first
non-functional requirement states that the system should react
fast.

• Setting up the Presence Simulator would take more time, due to
the fact that another tier needs to be installed and communica-
tion channels established, which is critical because the last non-
functional requirement states that the system should be easy to
use.

• Implementing the Presence Simulator would have taken more
time, which is critical because the thesis is restricted to a six
month period.

I believe these arguments outweigh the improved flexibility that a three
tier architecture would provide. However, as shown in the subsections
about the components of the server tier, the implemented architecture
is still quite flexible and can easily be transformed into a three-tier ar-
chitecture in future work.

Most other architec-
tures are not suited
for the Presence
Simulator.

Of course, there are more ways of designing computer software mod-
ules and the communication between them than the client-server model
and its multi-tier generalization. However, most of them are either spe-
cial versions of the two already mentioned – like the peer-to-peer model
– or simply do not fit the requirements of the Presence Simulator – like
the pipes and filters model.

3.2.2 Network Architecture

Client and server
are connected via
WLAN.

The network architecture defines the communication channels between
the Presence Simulator’s server and client. Functional requirement
number seven states that location updates need to be transmitted over



3.2 Design Overview 21

WLAN

(a) Client-server communication via
WLAN

Internet

(b) Client-server communcation via the
internet

Figure 3.2: Two ways of settings up the connection between the Pres-
ence Simulator’s server and client. The WLAN setup is preferable, but
external conditions might force to communicate over the internet.

the air. So, a wireless communication channel is needed. The easiest
way to achieve this, is to simply connect server and Android client to
the same wireless local area network (WLAN) as depicted in Figure
3.2a. All Android devices have a built-in WLAN device, as do most
personal computers.

Setting up an ad-
hoc WLAN can be
done fast, but is not
supported by all
devices.

A easy way to set up a WLAN is the usage of an ad-hoc network. Ad-
hoc WLANs do not need a WLAN access point. Instead, the network
nodes communicate directly to each other in a peer-to-peer communi-
cation style. Most WLAN drivers should be able to set up or connect to
an ad-hoc network, but especially older Android devices like the Mo-
torola Defy, that has been used in the evaluation of the Presence Sim-
ulator, might lack this functionality. The ad-hoc mode also decreases
the computer’s performance compared to a normal access point based
WLAN. Therefore, when there is already a WLAN access point avail-
able, it is usually a good idea use it.

When WLAN is not
available but the
server is accessible
from the internet, the
smartphone’s 3G
connection can be
used.

Sometimes WLAN communication is not an option. Maybe the WLAN
is also used for private data and one does not want to compromise the
network by connecting an Android device to it. Sometimes an ad-hoc
network is hard to configure and maybe connection cannot be estab-
lished. When the Presence Simulator server is accessible from the in-
ternet, there is another way to set up a connection between client and
server. It is possible to connect to the server’s internet protocoll (IP)
address and port, so Android smartphones can use their built-in 3G
network device to connect to the internet and can therefore connect to
the server without using WLAN. This connection type is shown in Fig-
ure 3.2b. Of course, 3G network connections are often not as reliable
and fast as WLAN connections, so this type should only be used when
WLAN is not an option.



22 3 The Presence Simulator

3.3 Basis Technology and Frameworks

The server is based
on the .NET frame-
work, the client on
the Android platform.

In this section, the two most basic frameworks that were used for the
implementation of the Presence Simulator are introduced: The .NET
framework [Mic] and the Android platform [Gooa]. Because the .NET
platform is not very popular at universities, also a rough introduction
to C# – which is one of the .NET programming languages – is given.
Java on the other hand is so well known in the research community
that I will not introduce it here, although it is used by Android.

A Java based Pres-
ence Simulator pro-
totype performed
worse than the .NET
based one.

Why is the .NET platform used? Because the client software needs to
run on an Android device, it was inevitable to program the client in
Java. Of course, my first idea was to write the server’s code in Java, too.
However, I faced some difficulties in communicating with the webcam
and with image processing while working on a Java based prototype
of the Presence Simulator. Out of curiosity, I decided to give the .NET
platform and C# a try – I had no experience with the platform. Soon,
I found a really useful image processing library called AForge [Kira].
The first prototype turned out to perform much better than the Java
version and so I stuck to it.

3.3.1 .NET Framework and C#

.NET is a software
platform developed
by Microsoft and
released in 2002.

The .NET platform is a software framework as well as a runtime en-
vironment developed by Microsoft during the last ten years. The first
version was released in 2002. At the time of writing, the current stable
release is .NET 4.0, which was released in April 2010. The .NET plat-
form provides a healthy ecosystem. A lot of third party tools, libraries
and frameworks can be found on the internet.

The CLR is compa-
rable to the JVM.

The runtime environment of the .NET platform is called Common Lan-
guage Runtime (CLR). .NETs CLR is comparable to the Java virtual ma-
chine, because it is an interpreter which executes intermediate code.
Like the Java bytecode, which can be compiled from several different
languages, .NETs Common Intermediate Language (CIL) can be gener-
ated from different higher level languages, like C# or VB.NET.

Performance can
be gained by using
unmanaged code.

Technologies like reflections, garbage collection or just in time compil-
ing has been adapted by Microsoft from the Java platform. But there
are also a lot of differences to Java. One fundamental difference is that
.NET programs can consist of code managed by the CLR (managed
code) as well as unmanaged code like calls to Microsoft’s Component
Object Model (COM). In contrast to Java, .NET supports pointers on the
memory space and operations on them. Programmers need to be aware
of the risks that pointer-operations come with, and therefore, code with
pointer-operations needs to be declared in an unsafe code block. By by-
passing the features of the CLR, a lot of performance can be gained. The
image analyzing parts of the Presence Simulator are making extensive
use of these features.



3.3 Basis Technology and Frameworks 23

C# is a .NET lan-
guage with static and
strong typing.

As mentioned, CLR code can be generated from several higher level
languages. The server part of the Presence Simulator is written in one
of them: C#. C# is a object oriented programming language with static
and strong typing. As mentioned, pointers can be used in unsafe code
blocks.

C# supports dele-
gates.

In C#, pointers on methods are supported. They are called delegates.
Unlike pure method pointers, delegates also contain a pointer to the
object the method belongs to as an implicit parameter. C# supports
generics, anonymous methods, generators and partial classes (classes
whose definition is split into multiple pieces across multiple files).

Mono is an open
source and cross-
platform implemen-
tation of the .NET
framework.

The .NET framework runs primarily on Microsoft Windows. But there
exists an open source, cross-platform implementation named Mono1 of
C# and .NET’s CLR that is compatible with the .NET framework. All
third party libraries used by the Presence Simulator are said by their
developers to be fully operational with the Mono environment. There-
fore, it should be possible to make the Presence Simulator runnable
under Linux or MacOS with minimal efforts.

Visual Studio is the
standard IDE for
.NET.

There are a lot of software editors and Integrated Development Envi-
ronments (IDEs) for the .NET languages. The most commonly used by
far is Microsoft’s Visual Studio2. It is a full-blown IDE with a lot of
features. Like Eclipse for Java, it provides programmers with nearly
everything they need.

3.3.2 Android

In Q2 2012 Android
had a market share
of 68.1%.

Android is an operating system and a software platform for mobile
devices. It is developed by the Open Handset Alliance3 and its main
member Google. Android is free and open source. As a smartphone
OS, Android had a market share of 68.1% in the second quarter of 2012
[IDC12].

Android is based
on a modified Linux
kernel.

Android is based on the Linux kernel. Therefore, the memory and pro-
cess management as well as the interface for multimedia playback and
network communication provided by the Linux kernel are used. Of
course, the kernel used in Android is not a vanilla kernel, but a modi-
fied one with added hardware drivers and tweaks suitable for mobile
devices.

The DVM is a JVM
optimized for mobile
devices.

Software for Android is written in Java, but Android is not using a stan-
dard Java Virtual Machine (JVM). The JVM in Android is developed by
Google and called Dalvik Virtual Machine (DVM). It is an JVM opti-
mized for mobile devices and incompatible to other JVMs. As part of

1www.mono-project.com/
2www.microsoft.com/visualstudio/
3www.openhandsetalliance.com/

www.mono-project.com/
www.microsoft.com/visualstudio/
www.openhandsetalliance.com/


24 3 The Presence Simulator

the Android software platform, Google provides a well documented
and comprehensive software development kit.4

Android is not as
open as Google may
want us to believe.

Due to its relatively open nature, Android is very popular in the re-
search community and the industry [RLMM09]. That is the reason why
the Presence Simulator’s client is implemented for Android. However,
Android is not as open as Google may want us to believe. As Joe He-
witt, a Mozilla developer states: "Until Android is read/write open, it’s
no different than iOS to me. Open source means sharing control with
the community, not show and tell." [Hew10]

For the Presence
Simulator, Android is
open enough.

For this project, Android is open enough. For example, in contrast to
Apples iOS, Android allows programmers to simulate (mock) the de-
vices location by implementing a test location provider and registering
it to the system location services (see Section 3.8.2). However, dur-
ing implementation, some problems were faced. For example: While
mocking the device’s location was no problem, mocking the device’s
orientation is currently not possible.

3.4 Server Design Overview

The Presence Sim-
ulator comes with a
lot of features that
enhance usability.

In a basic and most requirement satisfying version, the Presence Sim-
ulator’s server is mainly responsible for detecting the positions of the
LSFs in the video stream, mapping these positions to geographic co-
ordinates and transferring them to the client. However, in its basic
version, the server would not be very useful. A lot of features which
highly increase usability would be missing. Therefore, I added addi-
tional features to also satisfy the last requirement that states that the
system should be easy and convenient to use. Some of the more ad-
vanced features that were implemented are an auto calibration system,
a location source track recorder, and an easy and quick to use interface.
These features are discussed in detail in Section 3.5. The current section
concentrates on the underlying software design that greatly simplified
the implementation of the server’s additional features.

The Presence Sim-
ulator’s server is
based on an MVC
architecture.

The Presence Simulator’s server is based on a Model-View-Controller
(MVC) architecture. This architecture was first formulated in the 1970s
by Trygve Reenskaug at Xerox PARC, where a lot of research on human
computer interaction has been done. [Wei08] Originally the architec-
ture was meant for designing computer programs with user interfaces.
In the following years, the architecture was extended, so nowadays it
is also used in other contexts.

The MVC architec-
ture separates infor-
mation and repre-
sentation.

The MVC architecture is a flexible architecture, allowing the system to
be easily extended later on. This flexibility is achieved separating the
information from its representation. The MVC architecture is depicted
in figure 3.3. Subsystems of applications that implement the MVC ar-
chitecture are divided into three different categories:

4developer.Android.com/sdk/

developer.Android.com/sdk/


3.4 Server Design Overview 25

ControllerView

Model

Figure 3.3: The Model-View-Controller architecture enables a conve-
nient way of extending software systems.

• The model is responsible for the knowledge of the application
domain and the notification of the views when there has been a
change in the model’s state, so the view can update the model’s
representation. In the Presence Simulator the model consists of
a list of location sources, with data about the position and cor-
responding geographic location of the LSFs. The location source
component is discussed in Section 3.5.1.

• When the view is notified by the model, it requests the informa-
tion from the model that is needed for the representation. The
Presence Simulator has several views implemented. For exam-
ple, in the server’s user interface, there is a map view where for
each location source, a marker is drawn. But the connection to the
Android client is also implemented as a view of a location source
model. The views are discussed in detail in Section 3.5.3, 3.5.4,
and 3.5.1.

• The controller contains the logic that is responsible for manipu-
lating the model (i. e. by updating the geographic location stored
in the model). In most MVC architectures, the controller can also
manipulate the views (i. e. when a text view is scrolled, the view
is changed by the controller). However, control mechanisms like
this are not implemented in the current version of the Presence
Simulator. Controllers can be found in the Detector component,
discussed in Section 3.5.2 and in the Recorder component, dis-
cussed in Section 3.5.5.

The observer pat-
tern can be used to
decouple the model
from the view.

When the model is changed and the views are notified, does this imply
that the model needs knowledge of all the views, so whenever a new
view is implemented the programmer needs to adapt the model, too?
There is a technique to avoids this: By adding an abstraction layer be-
tween model and view, the model only needs to be aware of an abstract
view type and not of all concrete view types that are implemented. This
is indicated with a dashed line between model and view in Figure 3.3.



26 3 The Presence Simulator

+Update()

+NameChange()

+Delete()

«interface»
LocationSourceObserver

+Getter/SetterN)

-latitude
-longitude
-screenPos

LocationSource

-formContainer
-formElements

LocationSourceFormView

-LocationSourceManagerN)
+getInstanceN):: LocationSourceManager
+getLocationSourceByIdN):: LocationSource

-instance : LocationSourceManager

LocationSourceManager

1

*

+AttachN)
+DetachN)
+NotifyN)
+NotifyNameChangeN)
+NotifyDeleteN)

LocationSourceSubject

1 *

+isSimilarN)
+getControlN)

Detector::Discriminator

1

1

Figure 3.4: UML class diagram of the server’s Location Sources com-
ponent. The yellow colored class is a dependency form the Detectors
component.

The abstraction layer can be implemented with the help of the observer
pattern, which is described in Section 3.5.1.

3.5 Server Components

In the following subsections the five components of the Presence Sim-
ulator’s server are described.

3.5.1 Location Sources

The LocationSource
class models the
LSFs.

An instance of the LocationSource class models an LSF. It is the combina-
tion of the position of the LSF in a frame of the video stream in terms of
pixel coordinates as well as the corresponding geographic coordinates,
which are restricted by the spatial area defined by the user. For conve-
nience and usability, the model also has a name property and a unique
identifier.

LocationSource ob-
jects are serializable.

LocationSource objects are serializable. This means, that they can be
transformed into a string (serialized) without loosing information.
Later on, the string can be transformed backwards (deserialized) to re-
build the same object. This feature is necessary to transmit location
sources via a network connection – as used by the server’s Network
component described in Section 3.5.4 – or save them to a file – as used
by the server’s Recorder component described in Section 3.5.5.

LocationSource ob-
jects have a Discim-
inator to distinguish
them.

In addition to the simple data properties, location sources also have
a property of type Discriminator. Discriminators are used by location
source detectors to discriminate location sources detected in the video
stream. That’s why the Discriminator interface defines a method for test-
ing whether two discriminators are similar to each other. The concrete
Discriminator type that is attached to the LocationSource depends on the
used location source detector (see Section 3.5.2).



3.5 Server Components 27

The LocationSource-
Manager manages
multiple Location-
Sources.

According to the second functional requirement, the server should
be able to handle and distinguish multiple location sources at the
same time, so that study participants can control several LSFs in the
model landscape or studies with multiple participants at once are pos-
sible. Therefore, a class called LocationSourceManager was implemented
which bundles several LocationSources into one object, by managing
them in a list. The manager has some handy methods to select a spe-
cific LocationSource by a Discriminator or by an identification string. The
manager is also responsable for shutting down all LocationSources when
the application is closed by the user. Because the server only needs
one LocationManager, the class is implemented as a singleton. Singleton
classes can be instantiated only once.

Singleton Pattern

SINGLETON PATTERN:
The singleton pattern is a creational pattern to ensure that there exits
only one object of the class the pattern is applied to. The singleton
was introduced by Gang of Four in their book “Design Patterns. Ele-
ments of Reusable Object-Oriented Software” [GHJV95]. The pattern
is usually implemented by having a private constructor and adding
a static method that instantiates the class’ object when the method
is called for the first time (lazy instantiation). The instance is then
saved as a private and static member.
In C#, the member and its getter method are usually implemented
as a property. One problem with this implementation is that – at
least in C# – it is not thread-safe. When multiple threads enter the
property at the same time, multiple instances of the singleton might
be created. As the Presence Simulator’ server is multi-threaded, this
should be avoided. Luckily, it can be, by having a static instantia-
tion instead of a lazy one. In order to achieve this, all singletons in
the Presence Simulator are marked as sealed to prevent that deriva-
tions of the singleton class are able to add instances. The property
is marked as readonly, so assignments can only be made during the
static initialization. [MS]

LocationSource,
LocationSourceSub-
ject and Location-
SourceObserer are
implementing the
observer pattern.

Figure 3.4 shows the class diagram of the location source component
with the LocationSource class and the LocationSourceManager class. The
abstract class LocationSourceSubject that is generalizing the Location-
Source class is part of the observer pattern. The observer pattern al-
lows the LocationSource model to notice subscribed views whenever the
model’s data gets updated, without having to know all concrete view
types. The model only needs to know the LocationSourceObserver inter-
face. There are three different methods for notification implemented:
One is for informing the observers about changes in the geographic co-
ordinates, one is for announcing a name change and one is for announc-
ing that the LocationSource object is about to be deleted, so observers can
adapt to this (e. g. by closing a network connection to the client).



28 3 The Presence Simulator

Observer Pattern

OBSERVER PATTERN:
The observer pattern is a behavioural pattern introduced by the Gang
of Four. [GHJV95] The pattern enables a subject to notify other de-
pendent objects, called observers, about changes. The subject is of-
fering a service for observers to subscribe and unsubscribe them selfs
to the updates. The subject is not depending on all concrete sub-
scribed observers, only on the observer interface. The observers are
implementing an update method which is called by the subject when
changes are emerging.
In the Presence Simulator, the pull model of the observer pattern is
implemented. That means that observers pull the updated informa-
tion they need from the subject within their update method. For that
reason, observers need to maintain a reference to a subject object.
In contrast to the pull modell, in a push model the information is
passed as a parameter to the observers. Therefore, all observers get
the same detailed information, whether they want it or not.

The LocationSource-
FormView is a con-
crete observer that
visualizes LSs in the
GUI.

A concrete LocationSourceObserver is already implemented in the Loca-
tion Sources component. It is a very basic view named LocationSource-
FormView. It represents a LocationSource within the user interface of the
server by visualizing it as a text view of the geographic coordinates, a
text box for the name and a control for the discriminator. The name
text box also serves as a controller, because it enables users to change
the LocationSource’s name property.

3.5.2 Detectors

Detectors recognize
LSFs in the video
stream by applying
computer vision al-
gorithms.

“The basic idea behind [object tracking] is to define marking attributes
(patterns, shapes, etc.) on the given object, use image processing tech-
niques to collect spatial data from the camera stream and finally to
calculate the 3D position based on the 2D image(s).” [PSKS11] De-
tectors are responsible for detecting the position of LSFs in terms of
pixel coordinates within the single frames of the video stream provided
by the webcam. The detectors implemented in the current version of
the Presence Simulator apply computer vision algorithms in order to
separate the region with the LSF from the rest of the image and also
to distinguish several found LSFs from each other. For the computer
vision parts, the Presence Simulator uses the AForge.Imaging and the
AForge.Video library [Kira].

The AForge.NET
framework is de-
signed for developers
in the field of com-
puter vision.

The AForge.NET framework is written in C#, released under the GNU
Lesser General Public License and designed for developers in the field
of computer vision and artificial intelligence. The framework is in con-
stant progress and continuously improved. The AForge.Video library
provides easy access to webcams. The webcam’s video stream is pro-
cessed efficiently and fast by multiple threads. The AForge.Imaging li-
brary is providing processing routines and filters for images.



3.5 Server Components 29

+isSimilar()
+getControl()

Discriminator

-color

ColorDiscriminator

+createDetector()
+createDiscriminator()

DetectorFactory
ColorBasedDetectorFactory MarkerBasedDetectorFactory

-colorTolerance
-blobSize

ColorBasedDetector

-threshold
-markerSize

MarkerBasedDetector

+Getter/Setter()

-latitude
-longitude
-screenPos

LocationSource::LocationSource

1

1

-controls

MarkerBasedDetectorForm

-controls

ColorBasedDetectorForm

+detect()

+getSettingsForm()

«interface»
Detector

1

1

1

1

Figure 3.5: UML class diagram of the server’s Detector component. The
violet colored class is a dependency from the Location Sources compo-
nent.

The VideoSource-
Player class pro-
vides efficient access
to the webcam by
managing multiple
threads.

The VideoSourcePlayer class of the AForge.Video library is used to access
the video stream of the webcam. Users of the Presence Simulator are
able to select the webcam device and its resolution (see Section 3.6).
When the VideoSourcePlayer is initialized during the start of the Pres-
ence Simulator, a listener for new video frames is registered to it. From
thereon, the listener is called by the AForge.Video library each time a
new frame is received from the webcam. The AForge.Video library is
managing a thread pool for the video processing. When the listener
takes more time to process a video frame than the period between two
subsequent frames, a new thread is launched to process the new frame.
The AForge.Video library automatically skips frames when processing
speed becomes critically slow. However, on the rather old computer
that was used in the evaluation of the Presence Simulator, a delay be-
tween the capturing of a frame by the webcam and the finalization of
its processing was experienced (see Section 3.8.2).

Concrete Detectors
have to implement
the Detector inter-
face.

The listener passes a reference to the new video frame to the detec-
tor, which then analyzes the frame. In the current version of the Pres-
ence Simulator, two detectors with different characteristics are imple-
mented. Both are implementing the Detector interface as shown in Fig-
ure 3.5. Users are able to select the Detector they want to use and pro-
grammers are able to extend the Presence Simulator by implementing



30 3 The Presence Simulator

new detectors. This flexibility is achieved by the implementation of a
abstract factory pattern.

Factories are respon-
sible for the creation
of Detectors and
compatible Discimi-
nators.

A factory is an object that is used to create other objects. An abstract fac-
tory is used for the creation of related sets of objects. The DetectorFactory
interface defines two methods: one for the creation of Detector objects
and one for the creation of Discriminator objects. Methods like these are
called method factories. As mentioned above, discriminators are used
by detectors to distinguish LSFs. Because there might be detectors that
use special features to detect LSFs, using a generic discriminator won’t
work. For both detector implementations, there is a concrete Detector-
Factory. The concrete factory’s methods create the specific detector and
the discriminator that is used by this detector.

Method Factory Pat-
tern

METHOD FACTORY PATTERN:
The method factory pattern is a creational pattern that controls the
creation of objects by adding an abstraction layer. According to the
Gang of Four, the essence of the pattern is to “define an interface for
creating an object, but let the classes that implement the interface de-
cide which class to instantiate. The Factory method lets a class defer
instantiation to subclasses.” [GHJV95] The pattern is often used by
frameworks, because it allows subclasses to select the concrete type
of objects that should be created. The main flow of control is de-
fined by the framework but the user application can define what is
happening in a specific situation by plugging in the desired concrete
method factory.

Users have to
choose between a
color based and a
marker based LSF
detector.

The two detectors which are implemented in the current version of the
Presence Simulator are the ColorBasedDetector and the MarkerBasedDe-
tector. They implement the Detector interface, that specifies a method
for the detection of LSFs and a method that returns a graphical user
interface in which by users can tweak the detector. The ColorBasedDe-
tector detects the LSFs by means of their color. The detector is fast, but
it needs a large contrast in color between the LFSs and the model land-
scape. Also, the lighting conditions should be as constant as possible
(e. g. the model landscape should not be placed in front of a window).
The MarkerBasedDetector on the other hand is robust to changes in light-
ing, but it requires the LFSs to "wear" special two dimensional markers
on top of them – which might be no problem when Matchbox R© cars
are used as LFSs, but when it comes to Playmobil R© figures, it might
not feel natural for study participants.

Color Based Detector

Tracking objects by
their color is a well
known approach.

Tracking objects by their color is not a new approach. For example
a color tracking algorithm was already implemented in the 1990s by
McKenna, Raja and Gong [MRG99]. Nowadays, computers are fast
enough to easily apply the method in real time on the frames of a high
resolution video stream. In 2008 Andrew Kirillov developed a system



3.5 Server Components 31

for the Lego Mindstorm NXT robotics kit5 which allows color based ob-
ject tracking [Kir08]. The color tracking algorithm implemented in the
Presence Simulator is based on his work.

Algorithm 1 Algorithm for the detection of LSFs in video frames based
on their color.
Require: An image of the current webcam frame and a list of location

sources.
Ensure: The location sources of the list have updated latitude and lon-

gitude coordinates.

for all locationSource in locationSourceList do
if typeof locationSource is ColorDiscriminator then
frame = Clone(currentFrame)
ColorFilter.applyInPlace(frame, locationSource.Discr.Color)
grayImage = GrayScaleFilter.apply(frame)
blob = BlobCounter.getLargestBlob(grayImage)
if blob.Size is within the size specified by the user then

locationSource.LatLng = Map.ConvertToLatLng(blob.Center)
end if

end if
end for

The algorithm it-
erates through all
available location
sources.

Algorithm 1 shows a pseudo code version of the color tracking algo-
rithm. When the ColorBasedDetector is called by the new video frame
listener, the current video frame is passed to it. The ColorBasedDetector
has access to the LocationSourceManager and is therefore able to con-
trol all the LocationSources created by the user. The algorithm’s outer
loop iterates through the available LocationSources. For each Location-
Source, the current video frame is cloned, because some instructions in
the loop’s body performed on the image are irreversible.

A AForge color fil-
ter is applied to the
cloned video frame.

On the cloned video frame, an AForge color filter is applied. The fil-
ter sets all pixels outside of a specified RGB color range to black. The
color range is defined by the Discriminator’s color of the current Loca-
tionSource and the color tolerance value is set by the user. To get good
results from the detector, the scene filmed by the webcam needs to be
uniformly illuminated, so that the color values of the LSFs do not de-
pend on their location in the scene.

The image is
grayscaled and blobs
are detected. Blobs
of a certain size are
assumed to be LSFs.

To reduce complexity, the resulting frame is then converted to a gray
scale image and the AForge BlobCounter is applied. The BlobCounter
extracts stand alone regions (blobs) that have a uniform color differing
from the background. It is based on a connected-component labeling
algorithm [CLRS09]. The BlobCounter might return several blobs, de-
pending on the level of noise in the video frame. Therefore, only the
largest blob is chosen by the ColorDetector. If the blob’s dimensions fit
into the maximum and minimum values set by the user, the ColorDe-
tector assumes that the blob corresponds to the current LocationSource.

5mindstorms.lego.com

mindstorms.lego.com


32 3 The Presence Simulator

Figure 3.6: A marker the MarkerBasedDetector is able to detect. Ready
to cut out and stick on location source figures.

The pixel coordinates of the blob’s center are then converted to latitude
and longitude coordinates by making use of the Map component (see
Section 3.5.3). The geographic coordinates are then used to update the
LocationSource.

Marker Based Detector

The MarkerBased-
Detector detects
optical glyph like
patterns.

The marker based detector tries to locate optical glyph like patterns in
frames of the video stream. Optical glyphs are grids with the same
number of columns and rows. Each cell of the grid is either black or
white. To distinguish the glyph from its background, the first and last
row and column is always black and the glyph is printed on white pa-
per. The cells of the inner rows and columns form a pattern which is
used to detect the orientation of the glyph and to distinguish glyphs
from each other. Optical glyphs are often used in augmented reality to
add 3D animation to a video stream.

Normal glyphs are
to large, but black
squares on white
background,with a
small colored region,
work.

In AForge, there is already a Glyph Recognition and Tracking Frame-
work (GRATF) implemented [Kirb]. During the initial tests I made,
it turned out that the glyphs need to be much larger than playmobile R©

figures to make the system operate precisely and reliably. However, the
detection of simple black squares on a white background without the
grid pattern inside works well, even when the square is sized like the
hat of a playmobile R© figure. That’s why I replaced the grid pattern of
the glyph with a black area and added a small colored square, halfway
between the center of the black square and one of its corners. The re-
sulting marker is shown in Figure 3.6. The colored square is used by
the detector to detect the orientation of the marker and to distinguish
markers from each other – each marker has a square colored in a differ-
ent color.

The color tolerance
value can be set
high.

Because the detector is using color to distinguish LSFs, a color filter
is applied, like it is in the ColorBasedDetector. But the color tolerance
value can be set much higher, because only as many colors need to be
distinguish as there are location sources and not as there are colors in
the video frame.



3.5 Server Components 33

Algorithm 2 Marker based algorithm for the detection of LSFs in video
frames.
Require: An image of the current webcam frame and a list of location

sources.
Ensure: The location sources of the list have updated latitude and lon-

gitude coordinates.

frame = Clone(currentFrame)
grayImage = GrayScaleFilter.apply(frame)
gradientImage = SobelFilter.apply(grayImage)
thresholdImage = ThresholdFilter.apply(gradientImage)
blobs = BlobCounter.processImage(thresholdImage)
for all blob in blobs do

if blob.Size is within the size specified by the user then
if blob is square and contrast to its background is large then
color = getBlobColor(blob, currentFrame)
discriminator = new ColorDiscriminator(color)
LsManager.updateLs(discriminator, blob.Center)

end if
end if

end for

Frames are cloned
and grayscaled, then
a sobel-operator is
applied.

A pseudo code version of the algorithm used by the MarkerBasedDe-
tector is shown in Algorithm 2. First, the current frame is cloned and
a grayscale filter is applied on the clone. Then, the sobel-operator is
applied to the grayscaled image. The sobel-operator detectes edges in
images by computing a gradient image of the image intensity function.
This is done efficiently by shifting a 3x3 convolution kernel over the
image computing the maximum difference between pixels in four di-
rections around the processing pixel [KVB88]. Because the contrast of
the marker’s black square to the white background is very high, the
edges of the square are highlighted in the gradient image.

The gradient im-
age is binarized and
blobs are detected.

The gradient image is then binarized with a threshold filter. The thresh-
old can be set by the user in the detector’s settings. Then, the AForge
BlobCounter is applied to the monochrome image to get all stand alone
regions of white color. The blobs that are returned by the BlobCounter
are filtered again, so that only the blobs remain that fit into the maxi-
mum and minimum size dimensions defined by the user.

The remaining
square blobs are
assumed to be
LSFs and are dis-
tinguished by the
small colored region.

At this stage, there are still blobs in the list that are not squares, so
these need to be filtered out. This is achieved by detecting the blob’s
corners and checking whether they fulfill the criteria of a square. When
they do not, they are filtered out. The MarkerBasedDetector assumes that
the remaining blobs correspond to LSFs. In order to distinguish them,
their coordinates are transferred back to the original video frame and
the color of their small colored region is extracted. This color is used to
create a new ColorDiscriminator and together with the blob’s pixel coor-
dinates, the discriminator is passed to the LocationSourceManager. The



34 3 The Presence Simulator

»onRenderDu

1fontProperties
1markerProperties

LocationSourceMapMarker

1MapOverlayFormDu
»getInstanceDuT: MapOverlayForm
»getMapImageDu
»FromLocalToLatLngDu
»setMapViewDu

1instance : MapOverlayForm

MapOverlayForm

»readDu

1videoFrame
1zxingQrCodeReader

MapWithQRCodeReader

»writeDu

1zxingQrCodeWriter
1pdfDocument

MapWithQRCodeWriter

+Update()

+NameChange()

+Delete()

«interface»
LocationSource::LocationSourceObserver

1

«

Figure 3.7: UML class diagram of the server’s Map component. The
violet colored class is a dependency from the Location Source compo-
nent.

LocationSourceManager takes care of converting the pixel coordinates to
geographic coordinates and updating the right location source.

The MarkerBased-
Detector is able to
detect the orientation
of LSFs.

One advantage of the marker based approach is that it is able to detect
the orientation of the marker. The Presence Simulator in its current
version is not making use of this feature, but it would be an option for
future works. In fact, implementing the orientation feature only failed
because in the Android framework it is currently not possible to mock
orientation data.

3.5.3 Map

The Map component
maps pixels to geo-
graphic coordinates
and visualizes LSs
on a map.

The primary task of the server’s Map component is to map pixel coordi-
nates of detected location sources from a webcam video frame to points
in a geographic coordinate system. The geographic coordinates can
then be used by location source controllers like the detectors discussed
in the previous subsection to update the location source’s presence. The
secondary task of the component is to visualize location sources on a
map view in the server’s GUI.



3.5 Server Components 35

Geographic coordi-
nate system

GEOGRAPHIC COORDINATE SYSTEM:
Geographic coordinate systems assign a unique set of numbers
and/or letters to every location on the earth . There are several sys-
tems which differ in the used measurements and accuracy. In this
thesis, the commonly used coordinates latitude and longitude are
used. A system quite similar to the latitude-longitude system has
already been used by Greek scientists more than two thousand years
ago. [Ord10]
The latitude coordinate specifies the north-south position of a point
on the surface of the earth. It is the angular distance of the point from
the equator, measured at the center of the earth. So, the point can be
either 90◦ north or south of the equator. The letter N (North) or a S
(South) is added to the degree value. Figuratively speaking, the earth
is sliced into discs parallel to the equator. [Ord10]
The longitude coordinate specifies the east-west position of a point
on the surface of the earth. It is the angular distance of the point from
the arbitrarily but consistently chosen north-south-line called prime
meridian. The standardized prime meridian extends through Green-
wich, Great Britain. Points on the prime meridian have longitude
zero. Points east of the prime meridian have a degree value between
0◦ East and 180◦ East, point west of the prime meridian a value be-
tween 0◦ West and 180◦ West. Again figuratively speaking, the earth
is sliced into wedges like an apple. [Ord10]

The spacial area
corresponding to the
landscape model is
defined using a map
view.

In order to perform the mapping, the spacial area that corresponds to
the video frame needs to be defined by the user. In the server’s GUI,
this can be done by adjusting a map view which is drawn congruently
above the video frame view showing the model landscape. Thus pixel
coordinates of the video frame can easily be mapped to the geographic
coordinates of the point in the map with the same pixel coordinates.

For the map, the
3rd party library
GMap.NET is used.

To draw the map, the server is making use of a library called GMap.NET
[rad]. GMap.NET is a powerful, open source .NET control which en-
ables the usage of maps from various providers, like Google6, Bing7

or OpenStreetMap8. In this thesis, the maps from OpenStreetMap are
used in order to avoid license problems, but changing the map provider
can be done very easily and even a custom tile server can be used. With
the help of the GMap.NET control, the map can be panned, zoomed and
rotated.

The MapOverlay-
Form encapsulates
the map in a sepa-
rate form.

The class that encapsulates the map control is called MapOverlayForm
and is shown in Figure 3.7. It is a WinForms form (see Section 3.6). It is
not a control embedded in the main form, because in WinForms, there
is no real transparency for controls – only for forms. Transparency is
needed to blend the map above the webcam view. As shown in the class
diagram, the MapOverlayForm class is implemented as a singleton. That

6maps.google.com/
7www.bing.com/maps/
8www.openstreetmap.org/

maps.google.com/
www.bing.com/maps/
www.openstreetmap.org/


36 3 The Presence Simulator

Figure 3.8: Map area saved in a PDF file for later use. The open-
streetmap map provider is used here. Map position, scale and orien-
tation are encoded in a QR Code which is used by the Presence Simu-
lator’s auto calibration system.

is because there is no need for multiple map views and location source
controllers can access the mapping functionality of the map more easily.

LSs are drawn as
markers on top of the
map.

Besides showing and adjusting map tiles, the GMap.NET control is also
capable of managing layers for markers which are drawn on top of the
map. The Map component uses this feature by drawing makers for each
LocationSource at the geographic location that is stored in the Location-
Source. The shape of the makers is defined in the LocationSourceMap-
Marker class, which is implementing the LocationSourceObserver inter-
face as shown in the class diagram. Thus, each time a LocationSource
changes its location or its name, the map marker is automatically up-
dated.

An auto calibration
mechanism helps to
align the map view.

Adjusting the map view in such a way that it corresponds exactly to the
physical model landscape captured by the webcam takes some time.
Therefore, the Map component has an auto calibration mechanism im-
plemented. The mechanism does not work with any model landscape,
only with those built upon a map printed especially for this purpose.

The map has a QR
Code on it that en-
codes the position
and scale of the
map.

Such a special map is shown in Figure 3.8. There is a Quick Response
(QR) Code in the upper left corner of the map. QR Codes are two di-
mensional bar codes which can be used to store data. In the QR Codes
used by the Presence Simulator, the spatial position and the scale of the
maps are stored.



3.5 Server Components 37

QR Codes

QR CODES:
QR Codes are a type of two-dimensional barcode that was first used
in the automotive industry in the 1990s. The code consists of black
squares arranged on a white background. Nowadays, QR Codes are
popular in various fields such as commercials and mobile comput-
ing. [Heg10]
QR Codes are standardized by the ISO/IEC. There are six different
versions of QR Codes which differ in size and the amount of data
that can be stored in the code. The QR Codes used by the Presence
Simulator are version three QR Codes. They consist of a 29x29 matrix
of back and white squares, surrounded by a four squares thick white
border that is called the quiet zone. [Heg10]
The matrix is divided into different areas. On the upper two corners
and the lower left corner the cells of the matrix form larger black
squares. These squares are called positions, because they are used
to detect the position of the code. Between the positions, there are
checked rows and columns which are used to define the timing. On
the lower right corner, there is a smaller square like structure that is
used to detect the alignment of the code. There are also some smaller
areas for format information and version information. The rest of the
matrix is used for the data. Data is stored using an error correction
algorithm. Therefore, QR Codes can be read even when some parts
of it are not visible or the image quality is not optimal. [Heg10]

The MapWithQR-
CodeWriter gener-
ates a PDF file with
a map and the re-
spective QR Code in
it.

The MapWithQRCodeWriter class is responsable for generating a PDF
file that contains a picture of the map and the QR Code. The class is
initialized with an image of the map currently shown by the MapOver-
layForm class, the desired output paper format and the name of the
destination file. The QR Code is generated using the .NET version of
Google’s zXing ("Zebra Crossing") library. [ZXi] zXing is an open source
library to generate and detect different types of bar codes.

The scaling is saved
relatively, because
the distance between
webcam and printed
map can vary. Rota-
tion is saved implic-
itly.

In order to safe the spatial position, the latitude and longitude coor-
dinates of the map point which is situated at the upper left position of
the QR Code are used. To safe the map’s zoom level, more effort is
required, because the scaling of the map depends on the distance be-
tween the webcam and the printed map – which may be unknown at
the time of generating the PDF file. That is why the distance in meters
between the map points which are situated at the upper left and upper
right position of the QR Code are used to encode the zoom level. The
map is always saved north up, so rotation is saved implicitly.

The PDFSharp li-
brary is used to gen-
erate the PDF file.

The map image with the QR Code is embedded into a PDF file using
the PDFSharp library [emp09]. The PDF format is used, because it is
better suited for files that are to be printed out than a normal image
format.

The auto-calibration
used the QR Code.

The MapWithQRCodeReader class is responsible for the actual auto cal-
ibration. When the auto calibration is started by the user, the current



38 3 The Presence Simulator

+start()
+stop()
+broadcast()

-timer
-port

Broadcaster

-tcpConnection

ClientConnection

-NetworkServer()
+getInstance()B: NetworkServer
+start()
+stop()
+log()
+manualStatusService()

-instance
-port
-tcpListener

NetworkServer

-LocationSourceManager()
+getInstance()B: LocationSourceManager
+getLocationSourceById()B: LocationSource

-instance : LocationSourceManager

LocationSource::LocationSourceManager

+Update()

+NameChange()

+Delete()

«interface»
LocationSource::LocationSourceObserver

1

*

Figure 3.9: UML class diagram of the server’s Network component.
The violet colored classes are dependencies from the Location Source
component.

webcam frame is analyzed with the help of the zXing QR Code detec-
tor. When the detector was able to decoded a QR Code, the position
of the map in the MapOverlayForm singleton is set to the latitude and
longitude values that were stored in the QR Code. In order to set the
zoom level, the MapWithQRCodeReader takes the two geographic points
of the MapOverlayForm’s map, that correspond to the upper two position
points of the QR Code. The zoom level is then set so that the distance
between the two geographic points equals the distance stored in the QR
Code. The rotation of the MapOverlayForm is set so that the line defined
by the two geographic points is parallel to the map’s upper border.

3.5.4 Network

The Network com-
ponent sends loca-
tion updates to the
clients.

The Network component is primarily responsible for transferring the
changing latitude and longitude coordinates of LocationSources to a
client software running on Android smartphones. The client software
that receives the updates and mocks the device’s location is discussed
in Section 3.8.2.

Because of the lim-
ited capacities of
smartphones, the
location updates can
not be broadcasted.

My first idea on how to implement the Network component was to sim-
ply broadcast all location source updates in the local network. More
than one location source might be available at the same time, so addi-
tionally to the location update, the broadcast message would also con-
tain the location source’s ID. However, when there are many location
sources available and the update frequency is high, the client might get
flooded with messages – which is a problem, especially since the hard-
ware of smartphones is not that capable. That is why broadcasting the
updates is not possible.



3.5 Server Components 39

Each smartphone is
connected via a TCP
connection.

To avoid the flooding problem, the Network component has to ensure
that the client only receives location updates for one location source,
namely the one the client is registered to. The network component
achieves this by handling a Transmission Control Protocol (TCP) con-
nection to each client separately.

TCP provides a re-
liable and ordered
delivery of packages
by managing con-
nection.

TCP is a widely spread network protocol used by a lot of network ap-
plications. TCP provides a reliable and ordered delivery of data in
form of a stream of packages. TCP is connection oriented. That means
that before transferring data between two TCP endpoints, a connection
needs to be established and after the transfer the connection needs to be
closed. That is exactly what is needed to avoid the flooding problem.
Endpoints of TCP connections are defined by the Internet Protocol (IP)
address of the device the endpoint is running on and a port number.

A connectionless
UDP transfer would
be costlier.

Another option would have been the usage of the User Datagram Pro-
tocol (UDP), which would have needed the implementation of some
sort of subscribing and unsubscriping mechanism. That would have
been costlier to implement than the TCP approach.

The NetworkServer
is implementing a
TCP listener that
passes incoming
connections to a
handler.

Figure 3.9 shows a class diagram of the Network component. The Net-
workServer class implements a TCP listener. A TCP listener is a thread
that listens on a specified port for incoming connections. When a client
connects to the listener, the listener starts a new connection and passes
it to a connection handler. The connection handler is also running in its
own thread. The NetworkServer is also responsible for logging and shut-
ting down active connections when the Presence Simulator application
is closed by the user. The class is implemented as a singleton.

The handler delivers
location updates to
the client.

The connection handler is implemented in the ClientConnection class.
The class implements the LocationSourceObserver interface (see Section
3.5.1). So, each time the latitude and longitude coordinates of the Lo-
cationSource that the ClientConnection is subscribed to are changed, the
ClientConnection is informed.

On connection initial-
ization the client
sends the ID of
the LS he wants
to subscribe to to the
server.

But how does the ClientConnection know to which location source it
should subscribe to? When the TCP connection is passed from the TCP
listener to the ClientConnection, the ClientConnection first waits for the
client to send a message containing a serialized version of the location
source the client has selected. The ClientConnection then subscribes it-
self as a LocationSourceObserver to the selected location source. After
this message is received, the ClientConnection is ready to send location
updates.

Location updates are
encoded in a GPX
file.

Location updates are serialized in form of a GPS Exchange Format
(GPX) file. GPX is based on XML. It is a open format that is used by
many programs to exchange geographic data [Top]. Below, a sample
GPX file is shown.



40 3 The Presence Simulator

1 <?xml version="1.0" encoding="UTF-8"
2 standalone="no" ?>
3 <gpx version="1.1" creator="Presence Simulator">
4 <trk>
5 <trkseg>
6 <trkpt lat="50.7340106171797" lon="

7.10656642913818" />
7 <trkpt lat="50.7340106171650" lon="

7.10643768310547" />
8 <!-- [...]-->
9 </trkseg>

10 </trk>
11 </gpx>

For each location
update, a trkpt tag
with the coordinates
is sent.

The first five lines of the GPX file are sent right after the client’s initial
message is received. Lines similar to the sixth and seventh line are sent
whenever the position of the location source has been changed by a
location source controller. When the connection to the client is closed
– e. g. when the Presence Simulator’s server is closed by the user – the
last three lines are sent and the client is thereby informed that the TCP
connection is about to be closed.

To avoid flooding, the
update frequency is
limited.

Sometimes, the geographic position of location sources is updated in a
very high frequency. The client might not benefit from this. In fact, the
client might get flooded with updates. Therefore, the update frequency
can be limited in the ClientConnection class. By default one update is
sent per second. When the location sources are updated in a higher
frequency, some updates are dropped. ,To select a location

source, the client
needs to know which
ones are available.

An important question has not
been discussed yet: How does the client know which location sources
are available on the server? Let’s first look at the more convenient way
to transfer this knowledge from the server to the client.

The StatusBroad-
caster periodically
broadcasts a list of
location sources.

The StatusBroadcaster class periodically (by default every five seconds)
broadcasts an XML file with a list of currently available location
sources. In addition to the list of location sources, the IP address and
the port of the TCP connection listener are also broadcasted. Thus, it
is not necessary to enter this data on the client’s device manually. The
client simply listens for broadcast messages and thereby gets informed
about all available location sources and how to connect to them.

Some Android de-
vices cannot re-
ceive broadcast mes-
sages.

Unfortunately, not all Android devices are able to receive broadcast
messages. In theory, they should all be capable of this, but as various
people in Google’s Android developer group have reported9, at least
some devices running on Android version 2.2 and lower might lack
this feature.

The list of LSs can
be fetched alterna-
tively via a network
service.

When an Android device is not able to receive broadcasted status mes-
sages, it is possible to fetch the status message manually, by connecting
to a special service offered by the NetworkServer class. The service is

9groups.google.com/group/Android-developers

groups.google.com/group/Android-developers


3.5 Server Components 41

+play»1
+stop»1
+pause»1
+onTick»1

-gpxFile
-timer

LocationSourcePlayer
-GPXFile

LocationSourceRecorder

+buttonOnClickHandler»1

-playButton
-pauseButton
-stopButton

LocationSourceTrackForm

+pauseRecordings»1
+continueRecordings»1

RecorderManager

+Getter/Setter»1

-latitude
-longitude
-screenPos

LocationSource::LocationSource

+Update()

+NameChange()

+Delete()

«interface»
LocationSource::LocationSourceObserver

1

*

Figure 3.10: UML class diagram of the server’s Recorder component.
The violet colored classes are dependencies from the Location Source
component.

implemented as a TCP listener. When a clients connects to the service,
a status message equal to the one broadcasted by the StatusBroadcaster
is sent to the client and afterwards the connection is closed. Of course,
in order to use the service, the user needs to know the IP address and
the port of it and has to enter the data in the client’s GUI.

3.5.5 Recorder

The Recorder com-
ponent records LS
tracks and replays
them.

The Recorder component of the server is responsible for recording
tracks of location sources as well as replaying them. A LocationSources
controller is implemented, because when a track is replayed, the lati-
tude and longitude coordinates of LocationSources are set. For the track
recording, a LocationSource view is implemented.

The Location-
SourceRecorder
is implemented as an
LS observer.

By default, the tracks of all location sources are recorded. When a Lo-
cationSource class is created, the LocationSourceRecorder class is instan-
tiated, too. The LocationSourceRecorder class implements the Location-
SourceObserer interface and thus objects of the class are informed when-
ever the LocationSource object they are subscribed to is updated. Up-
dates can then be saved as track points.

Tracks are encoded
as GPX files and
stored on the hard
disc drive.

Like in the ClientConnection class of the Network component, the track
is encoded in a GPX XML file (see Section 3.5.4). But in contrast to
the ClientConnection’s GPX file, timestamps of track points and the ID
and name of the location source are encoded as well. The GPX files
are saved on the hard disc in the "tracks" sub-folder of the Presence
Simulator’s server application. When the user changes the name of a
location source at some point during the recording process, this is saved
too, as shown in the following GPX file in line 12. Names and IDs are



42 3 The Presence Simulator

saved as XML comments within the GPX file, because encoding them
as XML tags would have contradicted the GPX XML schema [Top].

1 <?xml version="1.0" encoding="utf-8" standalone="no"?>
2 <!--locationSourceId:
3 9c73d3cf-2e58-4067-86a2-d5f669780229-->
4 <!--locationSourceName: Clark Kent-->
5 <gpx version="1.1" creator="PresenceSimulator">
6 <trk>
7 <trkseg>
8 <trkpt lat="50.7340106171797"
9 lng="7.10656642913818">

10 <time>634794907699836396</time>
11 </trkpt>
12 <!-- locationSourceName: Superman -->
13 <trkpt lat="50.7340106171797"
14 lng="7.10643768310547">
15 <time>634794907710386999</time>
16 </trkpt>
17 <!-- [...] -->
18 </trkseq>
19 </trk>
20 </gpx>

The timestamps of
single track points
are encoded as ticks.

Timestamps are encoded as ticks. A single tick represents 100 nanosec-
onds. The value saved as a time stamp is the number of ticks that have
elapsed since 00:00:00, January 1, 0001. Because the update frequency
of the location sources can be quite high and this accuracy is usually
not needed, some updates are dropped. By default, only one update
per second is written to the XML file.

Recording can be
paused with the help
of the RecorderMan-
ager.

The user might want to pause the track recording for example during
the setting up of the map overlay. Therefore, the RecorderManager class,
which is implemented as a singleton keeps track of the different in-
stances of the LocationSourceRecorder class. When the user pauses the
recording, the manager sets all recorders on pause. Recording is con-
tinued when the user uncheckes the pause function in the server’s GUI.

The LocationSource-
Player replays saved
GPX files, by making
use of XPath.

Instances of the LocationSourcePlayer class are able to replay a saved
GPX file, by controlling a LocationSource object. The player can change
the object’s name property and latitude and longitude coordinates ac-
cordantly to the data encoded in the file. The GPX file is loaded as an
XPathDocument object with the help of the XML tools provided by the
.NET framework.

The pace of the re-
play is similar to the
pace while record-
ing. A timer is used
to manage the dura-
tions.

XPath is an XML query language developed by the W3-Consortium
[BBC+10]. With XPath, it is possible to navigate through a XML Do-
main Object Model (DOM) by selecting nodes which fulfill specific cri-
teria. The LocationSourcesPlayer selects all "trkpt" (track point) nodes
ordered by their occurrence in the document. After all the nodes are
selected, a timer is started. When the interval managed by the timer
is elapsed, an event is fired. The interval is defined by the duration
between the timestamps of two subsequent track point nodes.



3.6 Server User Interface Design 43

When a new track
point is read, the LS
is updated and the
timer is reset.

When the timer fires the event, the next track point node is pulled from
the list and the timer’s interval is updated to the duration between the
current track point and the next one. Then, the latitude and longitude
properties of the LocationSource object the player is controlling are set
accordantly to the values stored in the track point node.

There is a GUI ele-
ment for Location-
SourcePlayers.

There is a special GUI control for LocationSource objects controlled by
a LocationSourcePlayer. The control allows the user to start, stop and
pause the playback.

A dummy discrim-
inator avoids in-
terference with LS
detectors.

Of course, LocationSource objects controlled by a LocationSourcePlayer
also have a discriminator. To make sure that these location sources
are not controlled by a LocationSourceDetector, a dummy discriminator
which always returns false is used.

3.6 Server User Interface Design

The server’s GUI is
based on WinForms.

The server’s user interface is implemented with the help of the Win-
dows Forms (WinForms) graphical application programming interface
(API) which is part of the .NET framework [MSD]. WinForms basically
wraps the Windows API in managed .NET code and thus provides ac-
cess to native Microsoft Windows interface elements like text boxes,
combo boxes or windows – which are called forms in WinForms. The
WinForms interface has also been implemented in Mono, so making
use of it is not restricted to Mircosoft Windows.

WPF is a modern
alternative to Win-
Forms, but it is not
supported by all of
the 3rd party libraries
the server is using.

Since .NET 3.0, there is an alternative API for rendering GUIs, called
Windows Presentation Foundation (WPF). WPF is using an XML based
language for defining GUIs, like it is also done in Android. This way,
a greater separation between the design of the GUI and the actual pro-
gram code is enforced. However, some of the third party libraries the
Presence Simulator uses are not offering WPF support and therefore,
the Presence Simulator sticks to the older WinForms.

Most of the server’s
GUI actions are im-
plemented as com-
mands.

Most of the actions provided in the Presence Simulator’s GUI are im-
plemented as commands. The command pattern encapsulates a single
action in a command object. As a result, there is a decoupling between
the action and the action invoker, allowing other objects to manipulate
an action or the combination of several commands to construct a more
complex action [GHJV95]. The overhead introduced by the command
pattern is rather large, but it is by far outweighed by the gained flexi-
bility.

The GUI design is in-
spired by the Ribbon
GUI.

The server’s GUI design is inspired by the Ribbon GUI interface intro-
duced in Microsoft Office 2007. In a Ribbon GUI, the main interface of
a program consists of multiple toolbars (ribbons) which are placed on
tabs in a tab bar. This is a well known design pattern, already used for
programs in the 1990s. Nevertheless, Microsoft is currently attempting
to patent the ribbons interface [HBMS04] and has already set up a web



44 3 The Presence Simulator

Figure 3.11: Video settings GUI of the Presence Simulator for control-
ling the webcam device. On the right side, the video stream of the
selected webcam is shown.

page10 for acquiring licenses for it. Therefore, I decided to make no use
of Microsoft’s ribbons library for the .NET framework. Instead, I used
the controls provided by the WinForms API to built a ribbon like UI. I
implemented the toolbars as tabs in a tab view on the left side of the
application’s window.

The video settings
on the left side of the
GUI allows users to
select a webcam de-
vice. On the right
side of the GUI,
the video stream
is shown.

Figure 3.11 shows the window that is shown when the user starts the
Presence Simulator. As mentioned, there is a ribbon like menu struc-
ture on the left side of the window. On the right side, there is a larger
webcam view. The list of available webcams and their resolution ca-
pacities is fetched with the help of the AForge library. By default, the
webcam view gets its video stream from the first available webcam,
but of course, the user can change this in the drop down lists shown
in the video settings menu. When the user changes the webcam reso-
lution, the window size is adjusted automatically, so that it is always
large enough for the webcam view.

The brightness, con-
trast and saturation
of the video stream
can be adjusted.

The three sliders in the video settings menu right below the video de-
vice settings can be used to modify brightness, contrast and satura-
tion of the video stream. This feature is implemented with the help of
AForge image filters. The filters are applied on all video frames before
they are used by the location source detector component. Therefore, by
tweaking the settings, detection quality can be increased. However, the
filters lower the video frame rate and are therefore deactivated when
the sliders are in the middle position – which is the default position.

10msdn.microsoft.com/en-us/office/aa973809.aspx

msdn.microsoft.com/en-us/office/aa973809.aspx


3.6 Server User Interface Design 45

Figure 3.12: GUI for managing Location Sources of the Presence Simu-
lator. In the webcam view on the right, a detected LSF is highlighted.

The LS settings en-
able users to select
a location source
detector.

In Figure 3.12 the location source menu tab is activated. The drop down
list at the top of the menu enables the user to select the location source
detector that is used by the server. In the current version, users can
select either the color based detector or the marker based detector. By
default, the color based detector is selected. As mentioned in the dis-
cussion of the server’s Detector component (see Section 3.5.2), detectors
need to have a detector settings form. This form is shown when the user
clicks on the "Detector Settings" button.

LSs can be added or
removed and saved
tracks can be re-
played.

The two buttons below the "Detector Settings" button are for adding lo-
cation sources that are either controlled by the selected detector ("Add
Location Source") or by a LocationSourcePlayer ("Add track"). When the
user clicks on the "Add track" button, a file selection dialog is opened,
allowing the user to select the track of the location source he or she
wants to replay. Below the buttons is a scroll view, where views of lo-
cation sources are added automatically. The scroll view in Figure 3.12
shows a LocationSourceFormView with a ColorDiscriminator control.

The ColorBasedDe-
tector can visualize
detected LSFs.

In the video stream view on the right side of Figure 3.12, a tiny green
square is visible. This square is drawn on the video frames by the Color-
BasedDetector to indicate that an LSF has been detected at this position.
LocationSourceMapMarkers are not visible in the figure, because they are
drawn on the map view, which is deactivated in the figure.

Both detectors have
their own setting
form, allowing users
to tweak the detec-
tion quality.

Figure 3.13 shows the setting forms of the color based detector and the
marker based detector. In both forms, there are settings that only affect
appearance and settings that may increase or decrease detection qual-
ity. Appearance settings affect how the video frames are drawn in the
GUI, they do not influence detection quality. For example, the user can



46 3 The Presence Simulator

(a) ColorBasedDetector settings form (b) MarkerBasedDetector settings form

Figure 3.13: Presence Simulator GUI forms for controlling visual and
functional settings of LSF detectors.

select to show only video frames filtered by the sobel filter, instead of
the unmodified ones, or the detected location sources can be visualized
with green squares directly in the video frame. Functionality settings
on the other hand do influence detection quality. In the settings form
of the ColorBasedDetector, the color tolerance can be set. In the settings
form of the MarkerBasedDetector, the threshold of the binarizer can be
set and in both setting forms the maximum and minimum size of the
LSFs can be specified in pixels.

The map overlay is
a separate form with
adjustable opacity.

Figure 3.14 shows the map menu and the video stream view. In the
figure, the map overlay is activated. The map overlay is actually a sep-
arate form that is positioned on top of the video stream view. Whenever
the user is moving the main window or the video resolution is changed,
the map overlay is repositioned and resized automatically. Addition-
ally, the map overlay is not shown as a separate form in the Windows
task bar. For the user, it looks like the form is part of the main form. The
reason for implementing the map like this is that the map needs real
and adjustable transparency so that it can be fitted to the model land-
scape shown in the underlying video view. The WinForm API does not
support real transparency for controls, but forms can be drawn trans-
parently. The opacity of the map can be adjusted by the user with the
opacity slider in the map menu.

The map view can be
zoomed, rotated and
panned, so it can be
aligned congruently
to the physical model
shown in the video
view.

The map view can be zoomed and rotated with the zoom and the bear-
ing slider. Due to a bug in the Gmap.NET library, there is no smooth
zooming. Only one of the 18 zoom levels provided by OpenStreetMap
can be selected. When the mouse courser is on the map view, the map
can also be zoomed using the mouse wheel. The location of the map
can be changed with drag and drop mouse gestures on the map view.
When the user wants to calibrate the system, he or she has to use these



3.6 Server User Interface Design 47

Figure 3.14: Presence Simulator GUI with the map settings and tools
for the auto calibration system on the left side, and a semi-opaque
map view on the right. Underneath the map view, the webcam’s video
stream view is visible.

settings to align the map view congruently to the physical landscape
model shown in the video view.

The auto calibra-
tion speeds up the
alignment of the map
view.

Sometimes, the calibration may take some time and therefore the auto
calibration mechanism described in Section 3.5.3 can be used by click-
ing the "Detect Position" button. Of course, in order to successfully cal-
ibrate, the video view needs to capture a map with a QR Code printed
on it. When the user wants to save the current position as a map with a
QR Code, he or she can selected a paper format in the drop down menu
shown on the left of Figure 3.14 and click the "Save Position" button. A
file selection dialog will then be shown and the map that is currently
drawn by the map view will be saved with a QR Code on it in the se-
lected PDF file.

Markers of location
sources are drawn
on the map.

There is a LocationSourceMarker drawn in the marker overlay of the map
view shown in Figure 3.14. As mentioned in Section 3.5.3, the markers
are location source observers. Therefore, their position and name is
updated automatically whenever the location source is changed by a
location source controller.

The network menu
shows a log and
enables the user to
turn off the network
functionality.

In Figure 3.15, the network menu is shown. There are two check boxes
on top of the menu. With the first check box, the whole network func-
tionality can be turned off. Without the network functionality, Android
clients are not able to receive status messages and cannot connect to
the location source update streams. With the second check box, only
the broadcasting of status messages can be turned of. The largest area
of the network menu is used by a text view with a scrollbar. The text



48 3 The Presence Simulator

Figure 3.15: Presence Simulator GUI with activated network settings
on the left and a fully opaque map view on the right side.

box is used for logging. For example, when an Android client connects
to the server, this is logged in the text view. Additionally, the figure
is showing a map view with 100% opacity, so the video view is com-
pletely hidden by the map.

The recorder menu
enables users to turn
of track recording.

The recorder and the info menu tab are not depicted because there is
actually not much to show. In the recorder menu, there is only one
check box for setting the track recording functionality on pause. The
info menu tab shows a credits list and a button to reset all setting values
to default.

The application set-
tings are stored in an
XML file.

The application settings are automatically stored in a settings XML
file by using the application settings manager feature of Visual Studio.
With the help of this feature, the settings are persistent even when the
user restarts the application. Setting files are similar to property files
in Java, but they are much better integrated in the IDE. For example,
in Visual Studio it is possible to link the value of a GUI element with a
property within three mouse clicks.

3.7 Android Client

This section de-
scribes the Android
client that mocks the
device’s location.

In this section, the Android client of the Presence Simulator is de-
scribed. The client enables users to subscribe to an update stream of a
selectable location source. The corresponding server component which
provides the update stream is described in Section 3.5.4. Whenever an
update is received, the client sets the Android system’s values for the
geographic location accordantly.



3.7 Android Client 49

+updateLSListh1
+selectLSh1

-domParser

«Activity»
LocationSourceSelection

+listenForBroadcastsh1

«AsyncTask»
BroadcastReceiver

+sendLSSelectionh1
+reiceiveLocationUpdatesh1
+mockDeviceLocationh1

-tcpConnection
-saxParser

«AsyncTask»
LocationReceiver

+disconnecth1
+updateh1

-lastUpdateTime
-lastUpdateLatitude
-lastUpdateLongitude
-messenger

«Activity»
LocationReceiverActivity

+sendUpdateToGUIh1
+disconnecth1

-messenger

«Service»
LocationReceiverService

+Getter/Setterh1

-latitude
-longitude
-id
-name
-serverAddress

LocationSource

+fetchStatush1

-statusServiceAddress

«AsyncTask»
ManualStatusFetcher

1
*

1

1

1 1

1 1

Figure 3.16: UML class diagram of the Android client. The application
starts with the LocationSourceSelection Activity.

The LocationSource-
Selection Activity of
the client enables
users to select an
LS.

The architectural design of the client is shown in the Figure 3.16. The
main starting point of the application is the LocationSourceSelection Ac-
tivity class which is shown to the user right after the application is
loaded. An Activity in Android is like a window in full screen mode
on a desktop computer, but unlike it, an Android Activity should focus
on only one thing at a time, because of the limited screen size of mobile
devices [Gooa]. The LocationSourceSelection enables the user to select a
location source. Figure 3.17a shows the Activity. There is a list view in
the upper part of the Activity and each row of the list shows the name
and the server address of a location source. The user can register to
the location updates of a location source by taping on the corespondent
row.

The list of LSs is
fetched by the client
with AsyncTasks.

In order to provide the location source list to the user, the client needs
to fetch the list of available location sources from the Presence Simula-
tor’s server. As described in the Network component of the server (see
Section 3.5.4), there are two ways to fetch available location sources.
The more convenient one is to listen to the status messages the server is
broadcasting. The more robust one is to connect to the status service of-
fered by the server. For both ways, an AsyncTask has been implemented
in the client. The abstract AsyncTask class is provided by the Android
framework and enables the easy use of threads. An AsyncTask basically
encapsulates a thread. Tasks running for a long period of time – e. g. the
download of data from a server via a network connection – should be
implemented as AsyncTasks, so that they do not block the user interface
thread [Gooa].

The BroadcastRe-
ceiver receives the
server’s broadcast
status messages.

The BroadcastReceiver class is responsible for listening to broadcast mes-
sages. It is an AsyncTask and is started in the constructor of the Loca-
tionSourceSelection Activity. A status message broadcasted by the server
consists of an XML file containing a list of serialized location sources



50 3 The Presence Simulator

(a) GUI of the LocationSelection Activity,
showing a list of available LSs.

(b) GUI of the LocationReceiver Activ-
ity, showing the latest location update re-
ceived for the selected LS.

Figure 3.17: The Android client’s GUI.

and also the address of the location source update service. Once a sta-
tus message is received, the LocationSourceSelection activity is informed
by the AsyncTask so that it can update the user interface and fill the
list view with the new information. A domain object model (DOM)
parser is used to decode the data stored in the XML file. The XML DOM
provides methods to traverse an XML tree easily and access, insert or
delete nodes at a specific location. The DOM parser needs full access to
the whole XML file before the DOM can be used. The Android DOM
parser is provided in the W3C DOM package of the platform [Goob].

The ManualStatus-
Fetcher can pull sta-
tus messages from
the server without lis-
tening to broadcasts.

The ManualStatusFetcher class enables the user to connect manually to
the status service offered by the server. It is launched by the Loca-
tionSourceSelection Activity once the user has entered the address of the
server’s status service and tapped the "Fetch" button, which is shown in
Figure 3.17a at the bottom. When the ManualStatusFetcher has success-
fully received the status message and the connection has been closed by
the server, the message is passed to the LocationSourceSelection Activity
and processed in the same way as a broadcasted status message.

The client’s list of
LSs is continuously
synchronized.

The LocationSourceSelection Activity manages a list of known location
sources. When a new status message is received, the data in the list is
updated. So when a location source is renamed, deleted or newly cre-
ated on the server, the location source list of the client is synchronized.



3.7 Android Client 51

It is also possible to have location sources from multiple servers. This
might be an interesting option when evaluating an application with
several teams in multiple rooms. After each update, a small message is
shown to the user, describing what was updated. The Android frame-
work is providing a method for displaying messages called "toasts"
[Gooa].

When the user has
selected a LS, the
LocationReceiverAc-
tivity is responsible
for receiving location
updates.

After the user has selected a location source, the LocationSourceSelec-
tion Activity launches the LocationReceiverActivity Activity. The Android
framework then automatically places the launched Activity in the fore-
ground. The LocationReceiverActivity Activity displays the latest loca-
tion update received for the selected location source, as shown in Fig-
ure 3.17b. In order to continuously receive the update stream, a TCP
connection to the update service of the server is established.

The TCP connec-
tion to the server is
encapsulated in a
background service.

When the user is switching to another application – e. g. the application
that is evaluated – the client application is paused by the system. Usu-
ally, on pause no updates can be received. Even worse, when the de-
vice gets low on memory, the system might stop the client completely.
To avoid these problems, the connection to the server is established
within a Service and not in the Activity. A Service is a “facility for the
application to tell the system about something it wants to be doing in
the background (even when the user is not directly interacting with the
application)” [Gooa]. However, a Service is not a process and also not
a thread. Therefore, the LocationReceiverService launches right after the
start an AsyncTask named LocationReceiver that maintains the connec-
tion to prevent the blocking of the Service’s thread by the connection.

The location update
stream is decoded
with a SAX parser.

The LocationReceiver maintains the TCP connection to the server. At
the beginning of the connection, the ID of the selected location source,
encoded in a small XML file, is sent by the client, so the server can an-
swer with the correct update stream. The location updates are encoded
by the server in a GPX XML file, as described in Section 3.5.4. The
GPX file received by the client is parsed with the help of the Simple
API for XML (SAX). In contrast to the DOM parser used by the Loca-
tionSourceSelection Activity the SAX parser is a sequential access parser.
The DOM parser needs to know the whole XML document while pars-
ing, whereas the SAX parsers operates on each XML piece sequentially.
After a track point tag has been decoded, an event is fired by the parser.

When a location
update is received,
the GUI is updated
and the device’s
location is mocked.

When such an event is fired, the LocationReceiver updates the geo-
graphic location stored in the device’s operation system. This is done
by calling setTestProviderLocation method of the Android platform’s Lo-
cationManager with a Location object corresponding to the received lo-
cation as a parameter. The Presence Simulator’s client fakes a GPS re-
ceiver. In order to have the Android OS accept the faked location, the
user has to enable "mock locations" in the debug settings of the OS.

Communication is
done with messages.

The LocationReceiverActivity needs to be informed by the LocationRecei-
verService when an update is received, so that the GUI can be updated.



52 3 The Presence Simulator

The communication between Service and Activity is done by using a
Messenger. The Messenger class provided by the Android framework
allows message-based communication between different processes.

3.8 System Integration

Discussion on how
the non-functional re-
quirements are met
by the implementa-
tion.

In this section, it is discussed to what extend the implementation of the
Presence Simulator meets the requirements listed in Section 3.1. As de-
scribed in the last section in detail, the system meets all the functional
requirements by design. Therefore, only the non-functional require-
ment are discussed in the following list.

1. Whether the system’s reaction time is fast enough was evaluated
in the performance measurements discussed in Section 3.8.2. It
turned out that the system is so fast that there is only a small
delay between the movement of an LSFs and the location update
by the client, even when it is running on older hardware.

2. The spatial resolution depends on the selected video resolution of
the webcam. The higher the resolution of the webcam, the higher
the spatial resolution. For most cases, a resolution of 960x544
should be sufficient.

3. When the map view is calibrated precisely, the simulated presence
is accurate. Due to a bug in the GMap.NET library (see Section
3.6) smooth zooming is currently not supported. Therefore, it
might be necessary to calibrate the hight of the webcam manu-
ally.

4. The update rate was measured as described in Section 3.8.2. It
turned out that the update rate can easily be higher than one up-
date per second.

5. The size of the model landscape is only limited by the viewing range
of the webcam and the distance between webcam and model
landscape. A model landscape of the size of one by two meters is
no problem.

6. LSFs of the size of playmobile R© figures can be tracked reliably by
the system as long as the detectors are adjusted correctly and the
webcam’s resolution is set to at least 800x448 pixels (see Section
3.8.2).

7. No usability tests were made, so it cannot be stated whether the
system is convenient to use or not.

3.8.1 Software Testing

Unit and integration
tests ensure soft-
ware quality.

In order to increase the software quality and reduce the amount of bugs
in the Presence Simulator, several unit and integration tests were writ-
ten. Unit tests test single classes, whereas integration tests test the in-
teraction of components.



3.8 System Integration 53

Detectors are tested
with unit tests.

Examples of unit tests are the tests of the location source detector
classes, in which the LSF detection method is called by passing a sin-
gle video frame image. The image passed to the method shows one
LSF with known coordinates and the test verifies whether the detected
coordinates match the known ones.

The test of the loca-
tion update service is
an integration test.

An example of an integration test is the test of the location update ser-
vice implemented in the NetworkServer class, in which a LocationSource
object is instantiated and added to the LocationSourceManager. The Net-
workServer is started and a TCP connection to the location update ser-
vice is established, by sending the ID of the constructed LocationSource.
To test whether the update service is working properly, the coordinates
of the LocationSource object are changed and it is verified that the update
is transfered over the TCP connection.

3.8.2 Performance Evaluation

The measurements
ensure that the sys-
tem operates fast
enough.

In order to determine whether the Presence Simulator’s reaction time
is fast enough, so that study participants are not distract by a delay
between their movement of the LSF and the smartphone’s response
in changing the system location values, some performance measure-
ments were carried out. The detailed results of each measurement can
be found in Appendix A.

The measurement
setup is described.

In the measurements, the received location updates per second were
measured by counting the number of updates within a 20 second pe-
riod received at the Android client. For this purpose, the update brake
for avoiding flooding of the client was deactivated. During the 20 sec-
ond period one – respectively two – LSF(s) was (were) moved from one
side of the webcam’s view field to the other. Five different webcam
video resolutions were tested. The server software was running on an
Intel Pentium dual core T4500 with 2.30GHz – which is at the time of
writing a low end device. The used webcam was able to capture with
at least 30 frames per second (FPS) on resolutions below 800x448 pixel,
with at least 15 FPS on resolutions up to 960x544 pixel and with at least
10 FPS on resolutions above that. All measurements were performed
three times in a row. The average values are shown in Figure 3.18.

There is a delay on
higher resolutions.

The marker based detector was not able to detect markers at the low-
est resolution. At a video resolution of 960x544, there was a small
but noticeable delay (less than one second) between the users action
and the received updates. At a video resolution of 1280x720, the delay
was disturbing (more than two seconds). Therefore, higher resolutions
were not tested. I assume, a faster processor would enable the usage of
higher resolutions with a smaller delay.

800x448 or 960x544
pixels are recom-
mended.

On resolutions below 800x448, detection quality was not optimal: The
color based detector had some false positive detections and the marker
based detector some smaller dropouts. Therefore, a resolution of



54 3 The Presence Simulator

0

5

10

15

20

25

30

320x240 640x360 800x448 960x544 1280x720

Hz

Camera Resolution

Color based detector, one LSF Color based detector, two LSFs

Marker based detector, one LSF Marker based detector, two LSFs

Figure 3.18: Average received location updates per second at the An-
droid client.

800x448 or – when a small delay is tolerable – 960x544 pixels is rec-
ommended.

The marker based
detector does not
suffer much from in-
creasing the number
of LSFs.

There is almost not difference between the results of the marker based
detector measurements with one LSF and with two LSFs. The color
based detector however is losing performance. That is because the color
based detector applies the color filters and the other operations once for
each LSF, whereas the marker based detector applies its operations only
once per frame.

Performance was
acceptable.

Overall, the performance was acceptable. Even on the older hardware
used for the measurements, the performance was good enough to allow
a smooth and reliable operation.



55

Chapter 4

ShinyNavi - A Comparative
Study

A comparative study
based on a study for
Sönmez’s bache-
lor thesis was con-
ducted.

In order to determine whether a Presence Simulator based study can
produce results similar to the ones from a corresponding field study,
I carried out a comparative study with the help of Pascal Bihler and
Orhan Sönmez. Sönmez is currently working on his bachelor thesis
about location-aware task reminder tools. For his work, he needed to
determine whether a location-aware reminder is superior – in terms of
the number of forgotten tasks – to a simple to-do-list, with the help of
a research study.

Sönmez’s study was
conducted in a field
and in a lab environ-
ment.

The comparative study in this thesis is piggybacked on Sönmez’s study,
by conducting it twice: Once in a field environment and once in a lab
environment using the Presence Simulator. The study design and the
results of the studies are compared in this chapter.

The location-aware
reminder was inte-
grated in a naviga-
tion system.

Because the participants’ distraction is a critical factor in Sönmez’s
study, they were not openly asked to evaluate a location-aware re-
minder tool. Instead they had to evaluate a navigation system for
pedestrians guiding the participants through a predefined route and
were given a list of tasks to fulfill along the route to make the experi-
ence more realistic.

The navigation sys-
tem ShinyNavi is
remotely controlled.

The navigation system developed for the study is called ShinyNavi and
is presented in Section 4.2. It is remotely controlled by a human and
therefore is not a navigation system ready to use for real navigation
purposes.

4.1 Study Design

Demographics of the
participants.

24 participants attended the comparative study, nine of which were fe-
male and 15 male. The youngest participant was 11 years old and the
oldest 75 years. There were participants with no smart phone know-



56 4 ShinyNavi - A Comparative Study

ledge at all as well as average and experienced smart phone users.
None of the participants had any experience with the Presence Sim-
ulator.

A between-subjects
study design was
used. Half of the
participants attended
to a field study, the
others used the PS.

To avoid carryover effects, a between-participants study design was
used. The participants were split into two equal groups, each with sim-
ilar demographic characteristics. The first group – named P – attended
the field study, whereas the second group – named PS – attended a
similar study that took place in a lab environment with the help of the
Presence Simulator.

Both groups carried
out Sönmez’s study.

Both groups carried out Sönmez’s study and were therefore split again
into two equal subgroups with similar demographic characteristics: P-
T, P-L, PS-T and PS-, T being the group with nothing but the to-do-list to
help them, and L being the group with the location-aware reminder. All
participants had to accomplish 10 tasks distributed along a predefined,
circular track of 1.74 kilometers through the inner city of Bonn. The
participants were guided by the ShinyNavi application.

A list of the tasks
that had to be ac-
complished.

The tasks could only be accomplished at certain places along the track.
Here is a list of the ten tasks:

1. Count the number of windows of the university’s main building.

2. Please pick up a UNICUM magazine from the University.

3. What is the name of the kebab shop on Strockenstraße?

4. On weekdays after 9:00 pm, when do the buses run from the bus
stop Bonn Markt.

5. How much is a small Americano coffee at Starbucks?

6. At the post office on Münsterplatz, when is the mailbox emptied
on Saturdays?

7. Please pick up a pamphlet from the tourist information of the city.

8. At a ticket machine for local transport, please look up the price
level for a trip to Wesseling.

9. What is the Sub of the day at Subways?

10. Please take a picture of the head statue on Martinsplatz.

The L group partici-
pants were using the
location-aware re-
minder. The T group
participants only had
a to-do-list.

The participants in the two L groups were notified by the ShinyNavi
application when ever they reached a place where they had to accom-
plish a task. Additionally, they also had the option to view all tasks
in a to-do-list. The participants in the two T groups were not notified
by the application. They only had the to-do-list as a reminder. For the
to-do-list, a third party application named "My ToDo List"1 was used.

A continuous distrac-
tion was simulated
with math tasks.

To simulate a continuous distraction, the participants had to solve ad-
dition and subtraction problems with numbers up to 1000. The math

1play.google.com/store/apps/details?id=nz.co.guevara.
mytodolist

play.google.com/store/apps/details?id=nz.co.guevara.mytodolist
play.google.com/store/apps/details?id=nz.co.guevara.mytodolist


4.1 Study Design 57

tasks were asked continuously and in oral form on the way through the
city. They were repeated if requested by a participant.

The participants
were briefed at the
beginning of each
experiment.

At the beginning of an experiment, the respective participant was
shorty briefed. In the briefing the participant was told that the study
was about the effectiveness of a navigation system for pedestrians and
that there were ten tasks along a predefined track were to accomplish
to make the experience more realistic. Also it was mentioned that a
continuous distraction would be simulated with addition and subtrac-
tion tasks. The evaluation of the navigator was emphasized as the most
important part of the study. A smartphone with the ShinyNavi applica-
tion installed and the to-do-list was handed out to the participant and
it was explained how to control the software.

A questionnaire was
filled out at the end.

At the end of each experiment, a questionnaire was handed out, in
which the participants were asked about their gender, age, smartphone
experience and how appropriate the tasks and routing was. In the lab
study they were also asked about the authenticity of the simulation.
After the participant had filled it out, he or she was debriefed, by re-
vealing that the navigation system was only mocked and that the study
was actually about comparing a location-aware task reminder to a con-
ventional to-do-list, by counting the number of forgotten tasks. In the
lab study, they were also informed about the piggyback.

4.1.1 Field Study

Participants were
accompanied by two
researchers.

In the field study each participant was accompanied by Sönmez and
me on his or her track. One researcher controlled the ShinyNaviCon-
troller application that was used to send directions and tasks to the
ShinyNavi application as well as recording observation data. The re-
searcher controlling the application was also responsible for stating the
math tasks. The other researcher payed attention to the traffic in order
to avoid dangerous situations.

4.1.2 Presence Simulator Based Study

The design of the
PS based study was
similar to the field
study.

The Presence Simulator based study was similar to the field study ex-
cept that the participants did not walk through the real inner city of
Bonn, but moved an LSF in a model of the same area. Also there was
only one researcher present during the experiments.

The LSF had to be
moved very slowly.

The briefing at the beginning was extended by an introduction to the
Presence Simulator, the model landscape and how to move the LSF in
the model. In order to avoid that participants finish the track in a very
short time, they were told to move the LSF as slowly as possible. It was
explained, that the navigation application needs the slow movement to
work properly – which is not true, but sounds reasonable.

It was explained how
to use the PS.

Depending on the gender of the participant, a male or a female
playmobil R© figure was used as an LSF. The participants were told to



58 4 ShinyNavi - A Comparative Study

Figure 4.1: Model of the inner city of bonn with an LSF standing in
front of the university.

inform the researcher when the LSF reached a place where a task could
be completed. The participants were then provided with the material
needed to accomplish the task (e. g. a photo of the kebab shop on Strock-
enstraße or a batch of different pamphlets).

The model land-
scape was built on
top of a printed map.

The model landscape that was constructed for the study is shown in
Figures 4.1 and 4.2. It consist of a printed DIN A0 map showing a larger
area than needed for the track to avoid having to move the LSF along
the corners of the map.

Paper prisms roughly
indicate the location
of important build-
ings.

Some buildings were modeled with paper prisms. On the paper prisms,
small pictographs to indicate shops and public buildings were drawn.
Also, on most paper prisms the names of the shops (e. g. Starbucks)
were written. Some paths through buildings were not indicated on the
map. In these cases, the dashed lines were added to indicate the way.

Traffic noise was
played.

In order to simulate ambient noise, a recording of traffic noise was
played in a continuous loop.

4.2 ShinyNavi Implemenation

The navigation
system was imple-
mented by applying
the Wizard-of-Oz
scheme.

The implementation of a real navigation system for pedestrians with an
integrated location-aware task reminder would have been very expen-
sive. Therefore, the elaborate parts were done by a researcher who, at
the right moment, sent a direction or task reminder command to a client
application running on the smartphone that was handed out to the par-
ticipant. The researcher acted as the man behind the curtain. By doing
this, the same experience as with a real implementation was provided
to the participants, but without the efforts of actually implementing it.
Such experiments are often called Wizard-of-Oz experiments, because



4.2 ShinyNavi Implemenation 59

Figure 4.2: Close shot of the model of the inner city of Bonn with an
LSF standing near the Lubig bakery.

they are similar to “what happened to Dorothy in the Wizard of Oz”
[GW85].

The ShinyNaviCon-
troller can send di-
rection and task
command and is
used for logging the
participants behavior.

The application that sends the commands is called ShinyNaviController.
It is controlled by one of the researchers that accompany the partici-
pants on their route. Besides methods for sending direction commands
and task reminders, the application also offers methods for logging the
participants behavior and a list of math tasks. The application was de-
veloped for android and is shown in Figure 4.3b.

The ShinyNavi app-
lication was used by
the participants.

Figure 4.3a shows the ShinyNavi application that was used by the study
participants. There is a map view in the background that shows the
current location of the participant. In the figure, the application has
received a left command during the last 10 seconds, therefore the road
sign is visible in the foreground. When a task reminder is received, a
text box with the task’s description is shown. Whenever a command is
received, the smartphone vibrates.

The applications
are connected via
bluetooth.

In a prototype of ShinyNavi and the ShinyNaviController, the appli-
cations were connected via the Android Cloud to Device Messaging
(C2DM) service, offered by Google.2 However, it turned out that C2DM
is not reliable enough for the study. Sometimes, it took several sec-
onds until a message was received and some messages were even lost.
Therefore, I implemented a bluetooth version of the applications and
that fixed the problem.

2developers.google.com/android/c2dm/

developers.google.com/android/c2dm/


60 4 ShinyNavi - A Comparative Study

(a) When a command is received by
the ShinyNavi application, an overlay is
drawn on top of the map.

(b) The ShinyNaviController enables the
sending of directions and task commands
as well as the logging of the participants’
behavior.

Figure 4.3: The ShinyNavi application used by the study participants
and the ShinyNaviController application used by the researchers.

The source code of ShinyNavi and the ShinyNaviController can be found
on the CD-ROM attached in the back of this thesis.

4.3 Study Results

There was no sig-
nificant effect of the
environment on the
number of accom-
plished tasks.

A one-way between subjects analysis of variance (ANOVA) was con-
ducted to compare the effect of the test environment (field vs. lab) on
the number of accomplished tasks (0-10) for participants of the two
groups that had only a to-do-list as a reminder (P groups). The par-
ticipants with the highest and lowest accomplished task count in each
subgroup were excluded from the analysis (P04, P09, PS05 and PS11).
There was no significant effect of the test environment on the number
of accomplished tasks for the two conditions [F(1,6) = 0.871, p = 0.387].

The participants in
the L groups accom-
plished all tasks.

Because all participants in the two groups with the location-aware task-
reminder (L groups) managed to accomplish all ten tasks, there was no
significant effect of the environment on the number of accomplished
tasks for the L groups, either.



4.3 Study Results 61

0

1

2

3

4

5

6

Task
1

Task
2

Task
3

Task
4

Task
5

Task
6

Task
7

Task
8

Task
9

Task
10

#wofwaccomplishmentswfor
eachwtaskwinwthewfieldwstudy

#wofwaccomplishmentswfor
eachwtaskwinwthewstudywwith
thewPresencewSimulator

Figure 4.4: Accumulations of task accomplishments per task by par-
ticipants in the groups that had only the to-do-list as a reminder (T
groups). The groups had a size of six participants.

There was a dif-
ference in the re-
sults of the lab and
field study when the
completion of single
tasks is compared.

Figure 4.4 shows how many participants accomplished each task in de-
tail. The accomplishments of the participants of the field study are com-
pared to the ones of the participants of the lab study. It is obvious, that
most participants using the Presence Simulator forgot the second and
third task. The second task was to pick up a UNICUM magazine from
the University. In the field study, the participants were guided through
a room full of magazine racks. Presumably the room was not simu-
lated adequately in the model landscape. The third task was to find
out the name of the kebab shop on Strockenstraße. In the field study, the
shop emitted a strong kebab odor. Maybe the lack of this odor in the
model landscape is responsible for the fact that only one participant of
the Presence Simulator based study accomplished the third task.

There was no sig-
nificant effect of the
environment on the
number of detours
from the track.

A one-way between subjects ANOVA was conducted to compare the
effect of the test environment (field vs. lab) on the number of times the
participants went astray from the track. Again, the participants with
the highest and lowest count were excluded from the analysis (P3, P12,
PS02 and PS07). There was no significant effect of the environment on
the number of detours from the track for the two conditions [F(1,18) =
4.366, p = 0.051].

The model land-
scape should be
accessible from all
sides.

During the study with the Presence Simulator, I observed that some
participants had problems in deciding which way to move when they
were not looking in the same direction as the LSF. Therefore, I advice
to place the model landscape in the center of the lab room, so that the
participants can access it from all sides.

The test environment
effected the time
participants needed
for the track.

A one-way between subjects ANOVA was conducted to compare the
effect of the test environment (field vs. lab) on the time it took the par-
ticipants to complete the track. The participants with the longest and
shortest time were again excluded from the analysis (P1, P11, PS01 and



62 4 ShinyNavi - A Comparative Study

PS08). There was a significant effect of the environment on the time
the participants needed to complete the track for the two conditions
[F(1,18) = 63.189, p < 0.001].

Depending on the
study, methods for
extending the du-
ration of the exper-
iments should be
added.

Although the participants of the Presence Simulator based study took
more time than I expected, they were still much faster than the partici-
pants in the field environment. Therefore, when a study is carried out
where time is critical, methods for extending the period of time the par-
ticipants spend on an experiment with the Presence Simulator should
be added. In other cases, faster experiments imply more participants in
fewer time.

There was no sig-
nificant effect of the
environment on the
percentage of incor-
rectly answered math
tasks.

A one-way between subjects ANOVA was conducted to compare the
effect of the test environment (field vs. lab) on the percentage of incor-
rectly answered math task. The participants with the highest and low-
est percentage values were excluded from the analysis (P10, P12, PS01
and PS05). There was no significant effect of the environment on the
percentage of incorrectly answered math tasks for the two conditions
[F(1,18) = 0.728, p = 0.405].

The participants
rated the authenticity
of the simulation
rather high.

In the questionnaire handed out to the participants of the group using
the Presence Simulator, the participants were asked to rate the authen-
ticity of the simulation on a scale between 0 for very unrealistic and
9 for very realistic. On average the participants rated the authenticity
with a 6.2 (mean = 6.2, median = 6).



63

Chapter 5

Summary and Further Work

5.1 Summary and Contributions

Missing evaluation
techniques inhibit the
success of location-
aware applications.

Location awareness is an established technology, in which the geo-
graphic location of a device is influencing an applications function. In
the past, location-aware applications were not as successful as they
could have been. Often, privacy concerns are mentioned as an in-
hibitor. The expensive evaluation process of location-aware applica-
tions is rarely addressed.

The PS maintains
the scalability of field
evaluations while
keeping the options
and convenience of a
laboratory.

Location-aware applications are usually evaluated in expensive field
studies, which are hard to control, exhausting and time consuming for
researchers and participants. The system developed in this thesis tries
to solve these problems. The system is called Presence Simulator (PS).
It is a special laboratory setup, which maintains the scalability of a field
evaluation while keeping the options and the convenience of a labo-
ratory. The system simulates the geographic location of study partic-
ipants by tracking the movement of small toy figures, called Location
Source Figures (LSFs), in a model landscape. In the current version
of the Presence Simulator, playmobil R© figures are used as LSFs. The
simulated presence is transfered to android smartphones, on which the
geographic location of the device’s operating system is mocked accord-
ingly. As a result, the applications to be evaluated in research studies
using the Presence Simulator work with the mocked location data.

Living laboratories
and virtual simula-
tions are alterna-
tives, but with either
limited scaling abili-
ties or a high level of
abstraction.

Besides field studies involving actual users and an environment that is
as realistic as it can be, one-to-one simulations of a particular environ-
ment called living laboratories and completely virtual simulations have
been proposed in related works for the evaluation of location-aware ap-
plications. This thesis tries to overcome the limited scaling abilities of
living laboratories and the high level of abstraction that is inherent in a
virtual environment, with the implementation of a tangible user inter-
face.



64 5 Summary and Further Work

The PS is based
on a client-server
model. LSFs are
tracked passively
with the help of a
web cam.

The Presence Simulator is based on a client-server model. A web cam
mounted above the model landscape is attached to the computer on
which the server software is running. The server tracks the location
of the LSFs and maps their position in the model landscape to geo-
graphic coordinates. LSFs are tracked passively only by their appear-
ance. The geographic coordinates are transfered as an XML stream of
location updates via a TCP connection to a client software running on
android smartphones

The five components
of the PS’s server.

The Presence Simulator’s server is based on a MVC architecture and
consits of the following five componentens:

• The Location Sources component models LSFs by saving their sim-
ulated geographic coordinates and defines a Discriminator inter-
face to distinguish multiple LSFs.

• Detectors recognize LSFs in the video stream by applying com-
puter vision algorithms. In the current version of the Presence
Simulator, there is the ColorBasedDetector, recognizing LSFs by
their color, and the MarkerBasedDetector, that is able to detected
a special type of two dimensional marker. The ColorBasedDetec-
tor is sensitive to changes in lighting. The MarkerBasedDetector is
more tolerant to changes in lighting, but markers on playmobil R©

figures might distract the users.

• The Map component maps pixel coordinates to geographic co-
ordinates, enables the user to define the spacial area that corre-
sponds to the model landscape, and visualizes LSFs in a map
view that is part of the server’s GUI.

• The Network component offers a service to register to the location
updates of a specific location source in the network and sends
location updates to the smartphones on which the client software
is running.

• The Recorder is responsible for recording the tracks of location
sources by saving them to a GPX file. Saved GPX files can be
replayed and it is possible to stream the replay to the client.

The PS client runs
on android, connects
to the server and
mocks the device’s
geographic location.

The Presence Simulator’s client was developed for android. It connects
to the server and has a GUI for selecting a specific LSF and registering
to its update stream. The received updates are used to mock the devices
geographic location. The main parts of the client software are running
in the background, so updates are continuously received, even when
other applications are in the foreground.

A comparative study
was conducted.

To determine the effect of the test environment, the Presence Simulator
was evaluated in a comparative study. In the study, the effectiveness
of a location-aware task reminder was compared to a to-do-list: First
in a field environment and then using the Presence Simulator. Half of
the participants attended to field experiments. The other half used the
Presence Simulator. Both groups were split again into a group that used
the location-aware task reminder and a group that used a to-do-list for
accomplishing the same tasks.



5.2 Further Work 65

There was no sig-
nificant effect on the
number of accom-
plished tasks.

There was no significant difference in the number of accomplished
tasks between the groups in the field study and the corresponding
groups in the Presence Simulator based study. The participants us-
ing the Presence Simulator were significantly faster than the ones in
the field and thus the Presence Simulator based study was carried out
faster than the field study.

There was no signifi-
cant difference in the
number of detours
between lab and field
study.

Because the participant’s level of distraction affects the number of for-
gotten tasks, the location-aware task reminder and the to-do-list were
not evaluated directly but embedded in a navigation system for pedes-
trians. There was no significant effect of the test environment (field vs.
lab) on the number of detours from the track.

The PS based study
produced results
similar to the field
study.

The conducted Presence Simulator based study was able to produce
results similar to the results of the conducted field study, but was done
faster. Because it was situated in a controllable lab environment, all
tests were performed under the same conditions and no downtimes for
recharging the smartphones were needed.

5.2 Further Work

A list of ideas, tech-
niques and methods
that can be imple-
mented in further
work.

The Presence Simulator that has been developed in this thesis was build
up from scratch and due to the limited amount of time, I was not able
to implement and evaluate all the ideas that came to my mind. The
Presence Simulator has been designed with extendability in mind and
I hope that it will be extended by others in the future. Therefore, this
section presents a list of features, techniques and methods that can be
implemented in future work.

• Only one study to compare the usage of the Presence Simulator
in a location-aware user study to a traditional field approach has
been carried out so far. This is why no general statements about
the validity of the results of studies using the Presence Simulator
can be made. Therefore, it is advisable to carry out more compar-
ative studies.

• The color based detector and the marker based detector are based
on well known image recognition methods.The usage of a more
recent method (like the Scale-invariant feature transform) might
increase performance and/or detection quality, for example to en-
able the tracking of Lego R© figures, which are much smaller than
playmobil R© figures.

• An implementation of the Presence Simulator based on the reac-
TIVision project (see Section 2) would make the web cam mount-
ing construction on top of the table obsolete and the system could
benefit from the additional features of a reacTIVision table (e. g.
the touch interface).

• Adding a beamer to the system would allow the landscape model
to be dynamic (e. g. live traffic data could be projected on a map).



66 5 Summary and Further Work

This is also an advantage of the reacTIVision project, because it
already has a beamer integrated.

• The 3D printing technology is a emerging and interesting research
field in computer science. The Presence Simulator would greatly
benefit from the possibility of printing out 3D landscape models
and have them detected automatically by the system.

• The Presence Simulator can be used to evaluate the usability of
applications, but the usability of the Presence Simulator itself has
not yet been evaluated in a study.

• So far only the geographic location is simulated. To increase the
authenticity of the simulation it might be an option to simulate
orientation, altitude and velocity as well. The marker based de-
tector is already capable of recognizing the marker’s orientation,
but this knowledge is currently not used by the client.

• The client software has only been implemented for android. Im-
plementing a client for iOS and other mobile operating systems
would enable the usage of the Presence Simulator on these plat-
forms as well.

• The playback of ambient sounds is currently not integrated into
the Presence Simulator. As a result, it might happen that the LSF
stands in a park but the noise of cars is played. To avoid such
situations, the sound should depend on the location.



67

Appendix A

Detector’s Performance
Measurments

The following tables lists the results of the performance measurements
of the marker based and the color based detector. All measurements
where taken at the android client right afterthe location updates where
received and decoded. The values are the number of updates received
within a 20 seconds period devided by 20. Thus the measurement unit
is hertz (Hz). The Presence Simulator’s server software was executed
on an Intel Pentium dual core T4500 with 2.30GHz – which is at the
time of writing a low-end device.

At 320x240 the markers could not be detected. At 960x544, there was
a small but noticable delay (<1s) between the users action and the re-
ceived updates. At 1280x720, the delay was irritating (>2s). At resolu-
tions in between, performance was acceptable.

Color based detector, one location source (Hz)

Resolution Measurement 1 Measurement 2 Measurement 3

320x240 24.75 26.55 27.7
640x360 23.45 25.5 23.55
800x448 15 15.05 15.05
960x544 14.7 14.9 15.1

1280x720 9.75 9.55 9.8

Table A.1: Color based detector performance measurements with one
active location source.



68 A Detector’s Performance Measurments

Color based detector, two location sources (Hz)

Resolution Measurement 1 Measurement 2 Measurement 3

320x240 21.5 23.8 21.15
640x360 21.05 21.35 20.95
800x448 15.35 15.1 14.95
960x544 9.9 10.0 9.95
1280x720 6.05 5.95 5.95

Table A.2: Color based detector performance measurements with two
active location sources.

Marker based detector, one location source (Hz)

Resolution Measurement 1 Measurement 2 Measurement 3

320x240 n/a n/a n/a
640x360 25.65 22.5 24.6
800x448 15.75 15.7 15.65
960x544 13.45 13.35 13.5
1280x720 2.9 2.7 3.2

Table A.3: Marker based detector performance measurements with one
active location source.

Marker based detector, two location sources (Hz)

Resolution Measurement 1 Measurement 2 Measurement 3

320x240S n/a n/a n/a
640x360 22.2 23.65 21.9
800x448 15.35 15.4 15.65
960x544 12.3 12.65 13.05
1280x720 3.25 2.65 2.9

Table A.4: Marker based detector performance measurements with two
active location sources.



69

Appendix B

Data Recorded in the
Comparative Study

Task (0 = missed. 1 = completed.)

Participant 1 2 3 4 5 6 7 8 9 10

P02 0 1 1 0 1 1 0 0 1 0
P04 1 0 1 1 1 0 1 1 1 0
P05 1 1 1 1 1 1 1 0 0 0
P09 1 0 0 0 0 0 0 0 0 0
P10 1 0 0 0 0 0 0 1 1 1
P12 1 1 1 0 1 1 1 0 0 1

PS01 0 0 0 1 0 1 1 1 1 1
PS03 1 0 0 1 1 1 0 1 1 1
PS05 1 0 0 0 1 1 1 1 0 0
PS07 1 1 0 0 1 1 1 1 0 1
PS09 0 0 0 1 1 1 1 1 1 0
PS11 1 0 1 1 1 1 1 1 1 0

Table B.1: Task distribution of participants in the to-do-list group (T).
Participants in the location-aware reminder group (L) managed to com-
plete all tasks. P = field study participant. PS = Presence Simulator
participant.



70 B Data Recorded in the Comparative Study

Pa
rt

ic
ip

an
t1

Ph
on

e
O

bs
er

-
va

ti
on

s2
A

pp
Sw

it
ch

es
3

W
ro

ng
D

ir
ec

-
ti

on
s

W
ro

ng
M

at
h

Ta
sk

s
R

ig
ht

M
at

h
Ta

sk
s

Ti
m

e
[m

in
]4

P0
1

(L
)

43
0

1
10

72
29

.8
8

P0
2

(T
)

43
9

1
7

10
0

28
.4

3
P0

3
(L

)
49

0
0

10
50

20
.9

3
P0

4
(T

)
50

8
0

10
82

27
.0

7
P0

5
(T

)
44

8
1

7
69

26
.6

2
P0

6
(L

)
39

0
0

9
83

25
.6

7
P0

7
(L

)
41

0
0

8
54

26
.0

7
P0

8
(L

)
52

0
0

13
66

23
.5

2
P0

9
(T

)
36

0
0

13
73

21
.8

3
P1

0
(T

)
32

4
0

4
13

3
26

.0
8

P1
1

(L
)

41
0

0
3

65
20

.2
5

P1
2

(T
)

32
10

2
16

35
21

.2
7

Ta
bl

e
B

.2
:D

at
a

re
co

rd
ed

du
ri

ng
th

e
fie

ld
st

ud
y

w
it

h
th

e
Sh

in
yN

av
iC

on
tr

ol
le

r.

1 L
=

Lo
ca

ti
on

-a
w

ar
e

re
m

in
de

rs
.T

=
To

-d
o-

lis
to

nl
y.

2 N
um

be
r

of
ti

m
es

th
e

ph
on

e
ha

s
be

en
vi

ew
ed

.
3 N

um
be

r
of

sw
it

ch
es

be
tw

ee
n

th
e

to
-d

o-
lis

ta
pp

lic
at

io
n

an
d

Sh
in

yN
av

i.
4 Ti

m
e

w
it

ho
ut

br
ie

fin
g

an
d

de
br

ie
fin

g.



71

Pa
rt

ic
ip

an
t5

Ph
on

e
O

bs
er

-
va

ti
on

s6
A

pp
Sw

it
ch

es
7

W
ro

ng
D

ir
ec

-
ti

on
s

W
ro

ng
M

at
h

Ta
sk

s
R

ig
ht

M
at

h
Ta

sk
s

Ti
m

e
[m

in
]8

PS
01

(T
)

32
8

1
3

52
27

.3
0

PS
02

(L
)

38
0

0
5

46
15

.2
7

PS
03

(T
)

28
9

0
4

26
18

.7
8

PS
04

(L
)

31
0

2
7

29
13

.6
0

PS
05

(T
)

30
6

2
13

42
18

.7
8

PS
06

(L
)

44
0

2
4

50
15

.6
7

PS
07

(T
)

36
8

3
4

26
14

.7
8

PS
08

(L
)

29
0

2
5

36
13

.2
0

PS
09

(T
)

31
7

1
6

54
19

.3
5

PS
10

(L
)

42
0

0
12

52
16

.5
3

PS
11

(T
)

38
11

0
4

58
16

.8
3

PS
12

(L
)

28
0

0
8

30
15

.4
5

Ta
bl

e
B

.3
:D

at
a

re
co

rd
ed

du
ri

ng
th

e
Pr

es
en

ce
Si

m
ul

at
or

st
ud

y
w

it
h

th
e

Sh
in

yN
av

iC
on

tr
ol

le
r.

5 L
=

Lo
ca

ti
on

-a
w

ar
e

re
m

in
de

rs
.T

=
To

-d
o-

lis
to

nl
y.

6 N
um

be
r

of
ti

m
es

th
e

ph
on

e
ha

s
be

en
vi

ew
ed

.
7 N

um
be

r
of

sw
it

ch
es

be
tw

ee
n

th
e

to
-d

o-
lis

ta
pp

lic
at

io
n

an
d

Sh
in

yN
av

i.
8 Ti

m
e

w
it

ho
ut

br
ie

fin
g

an
d

de
br

ie
fin

g.



72 B Data Recorded in the Comparative Study

Pa
rt

ic
ip

an
t9

A
ge

Se
x

Sm
ar

tp
ho

ne
Ex

pe
ri

en
ce

10
Th

e
N

av
ig

at
io

n
w

as
...

11
Th

e
Ta

sk
s

w
he

re
...

12
Ex

ha
us

ti
on

13
M

en
ta

l
Ex

-
er

ti
on

14

P0
1

(L
)

31
♂

8
7

9
6

4
P0

2
(T

)
75

♂
0

9
4

9
5

P0
3

(L
)

29
♀

8
8

5
6

5
P0

4
(T

)
21

♀
8

7
6

4
9

P0
5

(T
)

15
♂

8
9

9
7

4
P0

6
(L

)
27

♂
7

8
0

4
6

P0
7

(L
)

23
♀

0
8

8
8

7
P0

8
(L

)
52

♂
7

7
1

7
8

P0
9

(T
)

32
♂

8
7

n/
a

8
9

P1
0

(T
)

54
♂

0
7

5
6

7
P1

1
(L

)
34

♂
1

9
9

9
9

P1
2

(T
)

33
♀

0
4

4
9

9

Ta
bl

e
B

.4
:D

at
a

re
co

rd
ed

in
th

e
fin

al
qu

es
ti

on
na

ir
e

of
th

e
fie

ld
st

ud
y.

9 L
=

Lo
ca

ti
on

-a
w

ar
e

re
m

in
de

rs
.T

=
To

-d
o-

lis
to

nl
y.

10
0

=
N

o
ex

pe
ri

en
ce

.9
=

M
uc

h
ex

pe
ri

en
ce

.
11

0
=

C
on

fu
si

ng
.9

=
Ex

pe
di

en
t.

12
0

=
D

is
ru

pt
iv

e.
9

=
A

pp
ro

pr
ia

te
.

13
0

=
K

O
.9

=
Fi

t.
14

0
=

Ve
ry

hi
gh

.9
=

N
ot

at
al

l.



73

Pa
rt

ic
ip

an
t15

A
ge

Se
x

Sm
ar

tp
ho

ne
Ex

pe
ri

en
ce

16
Th

e
N

av
ig

at
io

n
w

as
...

17
Th

e
Ta

sk
s

w
he

re
...

18
Ex

ha
us

ti
on

19
M

en
ta

l
Ex

-
er

ti
on

20
A

ut
he

nt
ic

it
y

of
th

e
Si

m
ul

at
io

n21

PS
01

(T
)

26
♀

6
7

7
2

2
6

PS
02

(L
)

25
♀

9
7

9
4

2
6

PS
03

(T
)

43
♀

1
8

9
5

3
5

PS
04

(L
)

11
♂

7
9

9
6

4
8

PS
05

(T
)

13
♂

2
7

8
9

6
8

PS
06

(L
)

53
♂

3
8

7
5

3
6

PS
07

(T
)

25
♀

2
4

6
2

3
5

PS
08

(L
)

34
♂

0
8

0
8

5
5

PS
09

(T
)

30
♂

5
8

9
7

7
7

PS
10

(L
)

62
♀

5
7

5
7

8
7

PS
11

(T
)

63
♂

4
7

9
7

5
6

PS
12

(L
)

26
♂

9
8

7
5

1
5

Ta
bl

e
B

.5
:D

at
a

re
co

rd
ed

in
th

e
fin

al
qu

es
ti

on
na

ir
e

of
th

e
Pr

es
en

ce
Si

m
ul

at
or

st
ud

y.

15
L

=
Lo

ca
ti

on
-a

w
ar

e
re

m
in

de
rs

.T
=

To
-d

o-
lis

to
nl

y.
16

0
=

N
o

ex
pe

ri
en

ce
.9

=
M

uc
h

ex
pe

ri
en

ce
.

17
0

=
C

on
fu

si
ng

.9
=

Ex
pe

di
en

t.
18

0
=

D
is

ru
pt

iv
e.

9
=

A
pp

ro
pr

ia
te

.
19

0
=

K
O

.9
=

Fi
t.

20
0

=
Ve

ry
hi

gh
.9

=
N

ot
at

al
l.

21
0

=
Ve

ry
un

re
al

is
ti

c.
9

=
Ve

ry
re

al
is

ti
c.





75

Bibliography

[ MS] MSDN. Implementing Singleton in C#. msdn.microsoft.
com/en-us/library/ff650316.aspx (visited on Au-
gust 29, 2012).

[AM00] G. D. Abowd, E. D. Mynatt. Charting Past, Present and Fu-
ture Research in Ubiquitous Computing. ACM Transactions
on Computer-Human Interaction 7:29–58, 2000.

[BBC+10] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández,
M. Kay, J. Robie, J. Siméon. XML Path Language (XPath) 2.0
(Second Edition). W3C Recommendation, World Wide Web
Consortium, December 2010.

[Blo11] S. R. Blom. The CareRabbit business model: Can innovation
get any cuter? Master’s thesis, January 2011.

[Bro07] Broadcom Corporation. BCM4750 Product Brief. Technical
report, Irvine, California, USA, November 2007.

[Cam03] Cambridge Positioning Systems (bought by Cambridge Sil-
icon Radio). Operators Forecast $12bn Location Based Ser-
vices Revenues - But Demand Low Cost Enabling Technol-
ogy. Technical report, Cambridge Positioning Systems, Ltd,
2003.

[Cas12] L. Cassavoy. 21 Awesome GPS and Location-Aware Apps
for Android. August 2012. www.pcworld.com/article/
260112/21_awesome_gps_and_locationaware_

apps_for_android.html (visited on August 25, 2012).

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduc-
tion to Algorithms, Third Edition. The MIT Press, 3rd edition,
2009.

[emp09] empira. PDFsharp library for processing PDF. 2009. www.
pdfsharp.com (visited on September 1, 2012).

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[GBG04] J. Goodman, S. Brewster, P. Gray. Using Field Experiments
to Evaluate Mobile Guides. In Schmidt-Belz and Cheverst
(eds.), HCI in Mobile Guides, workshop at Mobile HCI 2004.
Glasgow, UK, September 2004.

msdn.microsoft.com/en-us/library/ff650316.aspx
msdn.microsoft.com/en-us/library/ff650316.aspx
www.pcworld.com/article/260112/21_awesome_gps_and_locationaware_apps_for_android.html
www.pcworld.com/article/260112/21_awesome_gps_and_locationaware_apps_for_android.html
www.pcworld.com/article/260112/21_awesome_gps_and_locationaware_apps_for_android.html
www.pdfsharp.com
www.pdfsharp.com


76 Bibliography

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[Gooa] Google Inc. Android Developers. developer.android.
com (visited on August 30, 2012).

[Goob] Google Inc. Android W3C DOM API. developer.
android.com/reference/org/w3c/dom/
package-summary.html (visited on August 30, 2012).

[GW85] P. Green, L. Wei-Haas. The Wizard of Oz: A Tool for Rapid
Development of User Interfaces. June 1985.

[HBMS04] J. M. Harris, A. M. Butcher, D. A. Morton, J. C. Satterfield.
Command user interface for displaying selectable software
functionality controls. September 2004. US 2006/0036965 A1.
http://www.google.de/patents/US20060036965

[Heg10] M. Hegen. Mobile Tagging: Potenziale von QR-Codes im Mobile
Business. August 2010.

[Hew10] Hewitt, Joe (joehewitt). “Until Android is read/write open,
it’s no different than iOS to me. Open source means shar-
ing control with the community, not show and tell.”. October
2010. twitter.com/joehewitt/status/27878912110
(visited on August 28, 2012).

[IDC12] IDC Corporate USA. Android and iOS Surge to New Smart-
phone OS Record in Second Quarter, According to IDC. Au-
gust 2012. Press Release.

[Ips12] Ipsos OTX MediaCT. Unser mobiler Planet: Deutschland -
Der mobile Nutzer. May 2012. services.google.com/
fh/files/blogs/our_mobile_planet_germany_de.
pdf (visited on August 25, 2012).

[IU97] H. Ishii, B. Ullmer. Tangible bits: towards seamless inter-
faces between people, bits and atoms. In Proceedings of the
SIGCHI conference on Human factors in computing systems. CHI
’97, pp. 234–241. ACM, New York, NY, USA, 1997.

[KB07] M. Kaltenbrunner, R. Bencina. reacTIVision: a computer-
vision framework for table-based tangible interaction. In Pro-
ceedings of the 1st international conference on Tangible and embed-
ded interaction. TEI ’07, pp. 69–74. ACM, New York, NY, USA,
2007.

[KE04] D. Kulak, EamonnGuiney. Use Cases: Requirements in Context.
Addison-Wesley, 2004.

[Kira] A. Kirillov. AForge.NET Framework. www.aforgenet.com
(visited on September 1, 2012).

developer.android.com
developer.android.com
developer.android.com/reference/org/w3c/dom/package-summary.html
developer.android.com/reference/org/w3c/dom/package-summary.html
developer.android.com/reference/org/w3c/dom/package-summary.html
http://www.google.de/patents/US20060036965
twitter.com/joehewitt/status/27878912110
services.google.com/fh/files/blogs/our_mobile_planet_germany_de.pdf
services.google.com/fh/files/blogs/our_mobile_planet_germany_de.pdf
services.google.com/fh/files/blogs/our_mobile_planet_germany_de.pdf
www.aforgenet.com


Bibliography 77

[Kirb] A. Kirillov. Glyph Recognition And Tracking Framework.
code.google.com/p/gratf/ (visited on September 1,
2012).

[Kir08] A. Kirillov. Lego Pan Tilt Camera and
Objects Tracking. November 2008. www.
codeproject.com/Articles/31104/
Lego-Pan-Tilt-Camera-and-Objects-Tracking
(visited on September 1, 2012).

[KSAH04] J. Kjeldskov, M. B. Skov, B. S. Als, R. T. Hoegh. Is it Worth the
Hassle? Exploring the Added Value of Evaluating the Usabil-
ity of Context-Aware Mobile Systems in the Field. Pp. 61–73.
Springer-Verlag GmbH, 2004.

[KVB88] N. Kanopoulos, N. Vasanthavada, R. L. Baker. Design of an
image edge detection filter using the Sobel operator. IEEE
Journal of Solid-State Circuits 23(2):358–367, April 1988.

[MCB12] J. Marco, E. Cerezo, S. Baldassarri. ToyVision: a toolkit for
prototyping tabletop tangible games. In Proceedings of the 4th
ACM SIGCHI symposium on Engineering interactive computing
systems. EICS ’12, pp. 71–80. ACM, New York, NY, USA, 2012.

[Mic] Microsoft Corporation. Microsoft .NET Framework. www.
microsoft.com/net/ (visited on September 1, 2012).

[MRG99] S. J. McKenna, Y. Raja, S. Gong. Tracking colour objects using
adaptive mixture models. Image and Vision Computing 17(3-
4):225 – 231, 1999.

[MSD] MSDN. Windows Forms Reference. msdn.microsoft.
com/en-us/library/dd30h2yb.aspx (visited on Au-
gust 30, 2012).

[Mur11] B. P. Murphy. SoundStage. May 2011.

[OLMD07] E. O’Neill, D. Lewis, K. McGlinn, S. Dobson. Rapid user-
centred evaluation for context-aware systems. In Proceed-
ings of the 13th international conference on Interactive systems:
Design, specification, and verification. DSVIS’06, pp. 220–233.
Springer-Verlag, Berlin, Heidelberg, 2007.

[Ord10] Ordnance Survey. A guide to coordinate systems in Great
Britain. December 2010. www.ordnancesurvey.co.uk
(visited on September 1, 2012).

[PSKS11] T. Pallos, G. Sziebig, P. Korondi, B. Solvang. Multiple-
Camera Optical Glyph Tracking. Advanced Materials Research
222:367–371, April 2011.

[rad] radioman [Pseudonym]. GMap.NET WinForms Control ver-
sion 1.6.

code.google.com/p/gratf/
www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking
www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking
www.codeproject.com/Articles/31104/Lego-Pan-Tilt-Camera-and-Objects-Tracking
www.microsoft.com/net/
www.microsoft.com/net/
msdn.microsoft.com/en-us/library/dd30h2yb.aspx
msdn.microsoft.com/en-us/library/dd30h2yb.aspx
www.ordnancesurvey.co.uk


78 Bibliography

[RCT+07] Y. Rogers, K. Connelly, L. Tedesco, W. Hazlewood, A. Kurtz,
R. E. Hall, J. Hursey, T. Toscos. Why it’s worth the hassle: the
value of in-situ studies when designing Ubicomp. In Proceed-
ings of the 9th international conference on Ubiquitous computing.
UbiComp ’07, pp. 336–353. Springer-Verlag GmbH, 2007.

[rea05] The Design and Evolution of Fiducials for the reacTIVision
System. 2005.

[RLMM09] R. Rogers, J. Lombardo, Z. Mednieks, B. Meike. Android
Application Development: Programming with the Google SDK.
O’Reilly Media, Inc., 1st edition, 2009.

[Rus99] B. Russell. know your place - headmap - lo-
cation aware devices. 1999. technoccult.
zippykidcdn.com/wp-content/uploads/library/
headmap-manifesto.pdf (visited on August 25, 2012).

[SH09] O. Shaer, E. Hornecker. Tangible User Interfaces: Past,
Present and Future Directions. Found. Trends Hum.-Comput.
Interact. 3(1-2):1–137, 2009.

[SLCJ04] O. Shaer, N. Leland, E. H. Calvillo-Gamez, R. J. K. Jacob. The
TAC paradigm: specifying tangible user interfaces. Personal
Ubiquitous Comput. 8(5):359–369, September 2004.

[Sta11] T. Stapelkamp. Interaction- und Interfacedesign: Web-, Game-,
Produkt- und Servicedesign Usability und Interface als Corporate
Identity. X.media.press / publishing. Springer-Verlag GmbH,
2011.

[Ste04] C. Steinfield. The development of location based services in mobile
commerce. Pp. 177–197. Springer-Verlag GmbH, 2004.

[Top] TopoGrafix. GPX: the GPS Exchange Format.

[UI97] B. Ullmer, H. Ishii. The metaDESK: models and prototypes
for tangible user interfaces. In Proceedings of the 10th annual
ACM symposium on User interface software and technology. UIST
’97, pp. 223–232. ACM, New York, NY, USA, 1997.

[UI00] B. Ullmer, H. Ishii. Emerging frameworks for tangible user
interfaces. IBM Syst. Jornal 39(3-4):915–931, July 2000. http://
www.research.ibm.com/journal/sj/393/part3/ullmer.html

[UMT00] UMTS Forum, Information and Communication Technolo-
gies Group. Enabling UMTS / Third Generation Services
And Applications. Technical report, UMTS Forum, London,
October 2000.

[Wei08] M. Weisfeld. The Object-Oriented Thought Process. Addison-
Wesley Professional, 3rd edition, 2008.

[ZXi] ZXing Team. ZXing barcode processing library. code.
google.com/p/zxing/ (visited on September 1, 2012).

technoccult.zippykidcdn.com/wp-content/uploads/library/headmap-manifesto.pdf
technoccult.zippykidcdn.com/wp-content/uploads/library/headmap-manifesto.pdf
technoccult.zippykidcdn.com/wp-content/uploads/library/headmap-manifesto.pdf
http://www.research.ibm.com/journal/sj/393/part3/ullmer.html
http://www.research.ibm.com/journal/sj/393/part3/ullmer.html
code.google.com/p/zxing/
code.google.com/p/zxing/


79

Glossary

3G 3rd Generation (of mobile telecommunication technology)

API Application Programming Interface

CIL Common Intermediate Language

CLR Common Language Runtime

COM Component Object Model

DOM Domain Object Model

DVM Dalvik Virtual Machine

GNU GNU’s Not Unix

GPL GNU General Public License

GPS Global Positioning System

GUI Graphical User Interface

HCI Human-Computer Interaction

IDE Integrated Development Environment

IP Internet Protocol

JVM Java Virtual Machine

LAN Local Area Network

LS Location Source

LSF Location Source Figure

MAM Marble Answering Machine

MVC Model View Controller

PS Presence Simulator

QR Quick Response

RFID Radio Frequent Identification

RGB Red Green Blue (color model)

SAX Simple API for XML

TCP Transmission Control Protocol

TUI Tangible User Interface

UDP User Datagram Protocol

W3C World Wide Web Consortium

WLAN Wireless Local Area Network





Source-code and documentation of
the Presence Simulator is available online at

www.applesandoranges.eu/masterthesis/software.zip
Username: uni

Password: uhg592z

www.applesandoranges.eu/masterthesis/software.zip


Typeset October 2, 2012


	Introduction
	Motivation
	Problem Statement
	Contribution of this Work
	Thesis structure

	Related work
	Evaluation of Location-Aware Applications
	Field Studies
	Living Laboratory Studies
	Virtual Environment Studies

	Tangible User Interfaces

	The Presence Simulator
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Design Overview
	System Architecture
	Network Architecture

	Basis Technology and Frameworks
	.NET Framework and C#
	Android

	Server Design Overview
	Server Components
	Location Sources
	Detectors
	Map
	Network
	Recorder

	Server User Interface Design
	Android Client
	System Integration
	Software Testing
	Performance Evaluation


	ShinyNavi - A Comparative Study
	Study Design
	Field Study
	Presence Simulator Based Study

	ShinyNavi Implemenation
	Study Results

	Summary and Further Work
	Summary and Contributions
	Further Work

	Detector's Performance Measurments
	Data Recorded in the Comparative Study
	Bibliography
	Glossary

