
How to take the user on his word
Expressing and interpreting user intention

in a pervasive service environment

Master thesis

Pascal Bihler

Supervisors:
Vasile-Marian Scuturici

Lionel Brunie

Master Recherche d’Informatique
INSA de Lyon

June 17, 2005



Abstract

The introduction of pervasive computing environments in everyday life will not just be a
big step for users, but also for application designers. The well defined interaction interfaces
“keyboard” and “mouse” will make place for other, more intuitive ways of interaction. It is
the challenge for a pervasive system middleware to capture and model the user’s intention in a
smart way and to solve ambiguousness in the user’s expression of a pervasive action. This master
thesis introduces the Pervasive Service Action Query Language (PsaQL). PsaQL formalize the
description of a user intention using composed pervasive services. The thesis describes a way of
translating the user intention into an executable action and propose algorithms performing this
translation. Considerations to implement this process are given within the scope of PerSE, a
pervasive service environment developed by our research group, together with general evaluation
metrics for such algorithms and prototype benchmark results.

Résumé

L’introduction des systèmes pervasifs dans la vie quotidienne n’est pas seulement un grand
pas pour les utilisateurs, mais aussi pour les développeurs de logiciels. Les sytèmes pervasifs
proposent de remplacer les interfaces d’interaction traditionelles comme � le claviern� ou � la
souris � par d’autres modes d’interaction plus intuitifs. Le défi pour l’intergiciel d’un système
pervasif et alors de capturer et modéliser l’intention de l’utilisateur et d’en résoudre les ambi-
güıtés. Dans ce cadre, ce mémoire de Master introduit le Langage de Requêtes d’Actions de
Services Pervasifs (PsaQL). PsaQL formalise la description de l’intention de l’utilisateur en uti-
lisant des services pervasifs composés. Le travail propose une manière de traduire une intention
de l’utilisateur en une action exécutable ainsi que les algorithmes qui réalisent cette traduction.
Dans le cadre de PerSE, un Environnement de Services Pervasifs développé par notre équipe,
des considérations pour implémenter ce processus sont données, ainsi que les mesure d’évaluation
de tels algorithms et les résultats de tests de performances du prototype.

Zusammenfassung

Die Einführung von pervasivem Computing in das tägliche Leben bedeutet nicht nur für
die Anwender, sondern auch für die Anwendungsdesigner eine große Herausforderung.Bisher
wohlbekannte und präzise defininerte Schnittstellen wie ”Tastatur“ und ”Maus “ machen Platz
für andere, intuitivere Interaktionsarten. In einer pervasiven Dienstumgebung ist es Aufgabe
der Middleware, ”smart“ die Absicht eines Benutzers zu erkennen und zu modellieren sowie
Mehrdeutigkeiten bei der so gegebenen Definition einer pervasiven Aktion aufzulösen. Diese Ma-
sterarbeit präsentiert die Anfragesprache für Pervasive Dienst-Aktionen (PsaQL). PsaQL bietet
eine Formalisierung, um die Absicht eines Benutzers bei der Verwendung verketteter pervasiver
Dienste auszudrücken. Diese Arbeit beschreibt eine Vorgehensweise, diese Benutzerabsicht in
eine ausführbare Aktion zu übersetzen und präsentiert Algorithmen, die diese Übersetzung rea-
lisieren. Am Beispiel von PerSE, einer von unserer Forschungsgruppe entwickelten Platform zur
Verwaltung von pervasiven Diensten, werden Möglichkeiten der Implementierung dieses Prozes-
ses aufgezeigt und Überlegungen zur Performanzmessung solcher Algorithmen gegeben, gefolgt
von konkreten Ergebnissen einer solchen Messung an einem Prototyp.

This master thesis has been submitted in a synthesized form as the research
group’s paper proposal for The 2005 IFIP International Conference on Embed-
ded & Ubiquitous Computing (EUC’05), Nagasaki City, Japan.

Typeset of this work using LATEX:
teTEX-Distribution on darwin,

TEXShop and BibDesk
Lyon, 17/06/2005

2



Contents

1 Introduction 4

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Principal results of this master thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of this master thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related work 6

3 PerSE: A Pervasive Service Environment 7

4 Modeling User Intention - PsaQL 10

5 From user intention to user satisfaction 12

5.1 Translating a partial action into a complete action . . . . . . . . . . . . . . . . . . . 12

5.2 Modeling and implementation of action graphs . . . . . . . . . . . . . . . . . . . . . 15

5.3 Complete action representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.4 Evaluation metrics for a pervasive service environment . . . . . . . . . . . . . . . . . 19

6 Benchmark Results 20

7 Conclusion and open issues 22

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.3 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

References 24

Glossary 26

A PerSE-Base Description Interface 27

B Sparse Flooding Algorithm 29

C The PLNGen Algorithm 34

3



1 Introduction

Ubiquitous computing names the third wave in computing, just now beginning. First
were mainframes, each shared by lots of people. Now we are in the personal computing
era, person and machine staring uneasily at each other across the desktop. Next comes
ubiquitous computing, or the age of calm technology, when technology recedes into the
background of our lives. [Wei96]

1.1 Problem statement

“Pervasive” or “Ubiquitous” Computing – as Mark Weiser calls it in his trendsetting paper “The
Computer for the 21st Century” [Wei91] – left its cache and starts to become everyday reality. A
network of omnipresent, highly embedded computing machines (possibly with limited power and
communication resources) seems reasonable in the upcoming century in a manner, that one even
does not recognize the presence of these computers anymore. In the way, one perceives (or don’t
perceives anymore) his intelligent environment, the way one interacts with it has to change as well.
The shift is clearly defined from teaching the user how to interact with a computer to teach the
computer how to interact with a user. In our vision of pervasive computing, the human-machine-
interface becomes so far intuitive and natural that even uninformed people can benefit from their
enhanced environment without reading a single line of a user guide. The usage of a pervasive
environment should not be intrusive and gain attention, but rather just help the user to live better.

Computing devices will move from reactive actions to handling proactive ones (cmp. figure 1).1

Today, most machines react to more or less formal commands given by the user, e.g. switching
the television channel if the user presses some button on his remote control at the beginning
of the advertising block. In the future, knowing the user’s dislike for this kind of information
service, a proactive television could immediately switch the channel, mute the screen and sound
for the duration of the advertisement or present background information about the interrupted
broadcasting from the Internet.2

In our understanding, “being proactive” means for a computing system “understanding the
user’s intention”, “learning from its action history”, and “proposing an action” or “acting”. The
two first aspects touch the two ways of deriving an action intention, either from an explicit user
directive (voice command or similar) or by comparing the context information with the action
history. In a pervasive environment bringing different services on different machines together, it
should not be the concern of the service developer to care about user intention interpretation, but
rather he should rely on a well defined service interface and concentrate on doing the service work
well.

At the LIRIS laboratory in Lyon, we develop a pervasive service environment platform called
PerSE. This master thesis presents the first step towards interpreting a user intention and descri-
bing in a formal way a corresponding action using service composition. The proposed approach is
integrated in the PerSE environment.

1For sure, the technical designers need to ensure, that a proactive digital world doesn’t give the user the feeling
of being domineered in his actions by technology.

2Maybe, the advertising industry won’t be very happy about a proactive system like this, so unfortunately it is
unlikely that a big TV supplier will promote a handy solution like that, but the development of the “Werbefee”
(translated literally “advertisement fairy”) and its successor “Tvoon” in Europe and several similar products in the
U.S. show that there is a market for these products [Ohl03], [Unt05].

4



Reactive system:

User

Pervasive
environment

Service order

Service delivering

Proactive system:

User

Pervasive
environment

User observation

Service delivering

Service proposition

Figure 1: Reactive and proactive systems compared: A reactive system waits for user commands before it
delivers a service whereas a proactive system tries to foresee useful services by evaluating context information.

1.2 Principal results of this master thesis

This master thesis addresses the process of transforming a user intention into an executable action
in a pervasive service environment. The principal contributions of this work are:

• Modeling of the concepts partial action, action graph, and complete action for PerSE

• Development of PsaQL, a formal language to describe the user intention.

• Identifying of algorithms transforming a user intention into an executable action.

• Propositions for an implementation of the transforming algorithm.

• Considerations about performance measurements and benchmark results for a prototype.

1.3 Organization of this master thesis

This master thesis is organized as follows: After naming shortly related work in this research area
in chapter 2, the challenges and constraints of a pervasive service environment are presented by
introducing the main aspects of PerSE in chapter 3. In the following chapter 4, the process
of handling the user intention in a pervasive service environment is presented. We introduce an
intuitive formal language which can work as an intermediate step between the user’s expression of
an action intention and the system internal action representation. The translation process between
the user’s and the machine’s interpretation is performed by an algorithm presented in chapter 5.
This is followed by some benchmarks guidelines and prototype results in chapter 6, leading to a
conclusion and a set of open questions in chapter 7. In the appendix, exemplary results for requests
on the PerseBase description interface are given and two algorithms which arise in the context of
this master thesis are presented: The first algorithm (appendix B) tries to allude to one of the
open questions by reflecting on how the basic information about available services in the network
are acquired by the calculating machine and how the local database can be populated. The second
algorithm (appendix C) was used to generate test-data for the benchmarking process.

5



2 Related work

The execution of pervasive applications in a “user-aware” way has been worked out in [SG03]
and [SPP+03]. Similar as PerSE does, El-Kathib et al. design in [EKvBS04] a platform trying
to maximize user satisfaction while adapting the content of multimedia data with a dynamically
estimated path of enchained transcoders. His solution also relies on graph base composition, whereas
he does not present a formal language to define the adaptation requests. Currently optimized for
fixed network structures like available in the Internet, the platform is already resilient against
service failures and hereby maybe as well applicable in a pervasive context.

Other user-oriented systems for managing pervasive environments have been developed, for in-
stance Gaia [RHC+02] or Aura [GSSS02]. Gaia proposes a programming language to construct
executable tasks based on the interoperability of services, whereas Aura tries to avoid any interac-
tion with the user and does not present a model for user intention.

The Ninja Environment [GWvB+01] introduced the idea of composing services on distributed
adaptation paths, where [BB03] added path optimization considerations for content adaptation.
In [VRV05], M. Vallée et al. introduce a system for dynamic service composition in intelligent
environments: they are following a related way as PerSE does (see section 3), from a partial
action (what they call abstract plan) through a composition algorithm to a concrete action, in their
words detailed plan. They have worked out well the mechanisms for service descriptions and service
composition, while they do not present a formal way to express intuitive and computer-interpretable
user intention in form of a partial action. They rely on there part on a library of predefined abstract
plans, which can be interpreted as a kind of predefined execution history, but this history is not
taken directly into account when composing services.

C. Linnhoff-Popien et al. present in [PM94] a language to describe service request in computer
networks. This language specifies in details the semantic of a requested service but has not the
intention to support service enchainment as multistep action in a pervasive service environment.

Another widely explored field of research inspiring the development of this work are Semantic
Web Services, as presented for instance by [MSZ01]. Ontologies as defined by OWL-S [MvH04] can
help to create correspondent and valid action graphs and maximize the user satisfaction with a
calculated solution. Semantic composition of Web Services is as well introduced by [SvdAB+03],
[SdF03], [SPAS03], [VR04], and [Bra05]. The general challenge of matching several demands se-
mantically on web resources based on their descriptions is treated by [NSDM03].

A pervasive environment will be characterized by the availability of application context infor-
mation [MYA+05]. PerSE will use the contextual information to build an appropriate action graph
and to select the best solution as a response to a user intention. Earlier approaches of introducing
context based adaption into pervasive environments are presented in [RC03], [Mos03], and [VR04].
When one wants to use public available services in a pervasive network seamlessly, the security is
one of the main points. First attempts are made by introducing a smart authentication into PerSE
liked worked out in [SPB05].

In the scope of this master thesis, we have payed special attention to work out the meanings
of the terms “context” and “adaptability” in pervasive contexts. In general, context-awareness in
pervasive environment is a widely explored field of research, but there is not already one best
practice solution to incorporate it into real world applications. We published an extended state of
the art of approximately 30 pages for this subject at http://liris.wh4f.de/adaptation.pdf.

6



3 PerSE: A Pervasive Service Environment

In this chapter we present the pervasive service environment PerSE developed by our research
group. This allows us to introduce in an informal way the key concepts of this paper that will be
formally defined in the next chapters.

Pervasive service environments support the interaction of independent services3 collaborating
to perform an intended action. Examples for such services are a filesystem interface, a translating
service, a laser pointer acting as an input device or a video projector to visualize information. It
is the task of the middleware to connect the services in a pertinent and efficient way. We call this
combination of services complete action.

When constructing this action, the middleware has to respect the special constraints and features
of pervasive systems. Due to wireless communication needs, the underlying transport protocols
normally do not allow a transmission speed comparable with wired solutions. Actual protocols are
Bluetooth or IEEE 802.11b/g, both remarkable slower than the widely used Ethernet 100mps and
by far slower than the upcoming gigabit networks. Pervasive devices are normally embedded and
mobile, so relying on a mobile power supply. The usage of battery power as well as the limited size
of most pervasive entities leads to a usage of energy and space resources in a responsible manner,
therefore most CPUs in pervasive devices are slower and less powerfull than the processors of
Personal Computers. Finally, the mobile design of pervasive devices imply a highly dynamic network
layout, devices are appearing and hiding at any moment, the network connections are frequently
updated. A middleware managing the applications running in a pervasive environment has to react
to all of these constraints when defining an action to perform. The developer of the managing
system must take into account these limits when designing the underlying algorithms.

PerSE models such a system and offers the interfaces needed to use the managed services wi-
thout worrying about the limits of the pervasive environment. Figure 2 shows the basic architecture
of PerSE: Each service si is managed by a base-application called PerseBase bi. This entity is
responsible for managing the services it proposes and is capable to construct and start complete
actions, the system’s responses to a user intention. These complete actions are modeled in PerSE
as connected graphs of services.

The environment must select the best action as answer to a user intention with respect of the
constraints of the whole system (i.e. data transmission speed, reliability, ...). To describe a user
intention, we introduce the concept of a partial action, that means a description of the action
containing (more or less) exactly defined the data source and the data sink and maybe some steps
between. The PerseBase in charge has to derive a complete action from the partial action and the
knowledge it has about the available services in the network. This process is sketched in figure 3.
The challenge of deriving this complete action from a partial user input is studied in this work.
Detailed information about this process can be found in chapter 4.

3These services can be implemented as Web Services, adapted to the requirements of the environment-middleware,
but they needn’t be. In fact, any (long-term or short-term) process with inputs and/or outputs and a well defined
behavior can be used as a service.

7



PerseBases

Services

Complete Action

Figure 2: The global architecture of PerSE: Several bases managing services are interconnected. In this
example, three services are associated to a complete action.

The process of transforming a user intention into an executable series of commands for the
pervasive environment can easily be understood with the following example, which will accompany
us through the rest of this work:

A person enters a room, for instance a seminar classroom, and wants to display some presen-
tation about his vacation from his personal notebook. With today technologies and softwares, he has
to connect his computer to the local network and copy the file containing the presentation to the
local server connected to the video projector. Then he has to find the appropriate program on this
machine to present his slides. Alternatively, he can deconnect the projector from the local machine
and connect it to his own mobile computer, adjust the screen settings and so forth. A PerSE-
enabled, smart classroom, does not provide the ability to deconnect the local projector cable or to
access the room server, because these entities are “invisibly” embedded into the room arrangement.
Instead, the user expresses his desire by saying or typing “Show the sunrise presentation on the
projector”. His notebook, which runs a PerseBase as well and communicates with the local resources
via Bluetooth or WLAN, interprets the user command as a partial action with a service delivering a
presentation, the attribute sunrise for this service, and a connection with a service called projector.
Using the information about the local available services, context information (for instance the room
the user has entered) and the action history (maybe the user has already ran a request like this in
the past, so if this action is still valid, it can be reused), the PerseBase constructs a graph of all
possible (and reasonable) service combinations, each representing a complete action matching the
given partial action (see figure 4). From these combinations, an algorithm (see section 5.1) selects
the “best” one depending on a given cost-function, e.g. the volume of transferred data. Finally, this
complete action is executed: the presentation is displayed on the projector.

In this chapter we sketched the behavior of PerSE. In the next chapter we will formalize the
introduced notions.

8



User-
Intention

Partial
Action

Action
Graph

Complete
Action

Service
Information

+

Execution

Selection

Derivation

History

Context
+

Figure 3: A user intention is transformed into a complete action by selecting the optimal action from all
possible complete actions (action graph) matching the user intention, using the knowledge about available
services, the context information and the execution history.

Display the
presentation with

the sunrise on
the video projector

+

Execution

Selection

Derivation

2005-05-10: ...

+

USE sunrise.ppt
 ON BASE notebook
WITH SERVICE projector

Figure 4: A presentation is displayed with the help of the stationary video projector.

9



4 Modeling User Intention - PsaQL

When someone wants to use a computing system, most of the time he has a very concrete idea of
what he wants to do, even if he does not exactly know how to do it. The action which the system
should execute seems very clear for him. Unfortunately, this action is not complete that is it lacks
some information to be executable.

An action, as we have modeled it in PerSE, consists of several services corresponding to a
connected graph (complete action, figure 5 shows the simplest case, a chain of interconnected
services). Each service resides on a PerseBase, which means that for a communication, the base
information has to be present in a complete action description. In addition, to configure an adequate
handling of the data-flow by the participating services, the services need to be adapted to the
specific task. Special attributes have to be expressed with each service entity to complete the
action description.4

It is the challenge for the embedded user-intention-interpretation algorithm to create, based on
the little information from the user expressed in a partial action, a complete action which suits
best the user intention, maximizing his level of satisfaction. We introduce an object-oriented way of
modeling complete actions as well as a language to express partial actions in a system-independent
and intuitive way: PsaQL.

...... ...

Figure 5: An action consists of several services on PerseBases, called with specific attributes and forming a
connected graph. If the action is only partially defined, some of the parameters are not already fixed.

Even if the user interface once will be hidden completely into the background, there will still
be the need of expressing a partial action in a formal way. This representation can be used di-
rectly to express an intention or as an exchange format used by parts of the PerSE middleware
system. Therefore we decided to define a formal language, PsaQL (Pervasive Service Action Query
Language), which expresses in an intuitive way the user intention. PsaQL plays a similar role in
the PerSE-enabled pervasive environment as SQL [Dat86] does for accessing relational database
management systems. PsaQL also looks similar to SQL on the first glance:

USE sunrise.ppt ON BASE notebook WITH SERVICE projector

In this example, the user intends to display a sunrise presentation on a projector (see chapter 3).5

4In the example introduced in chapter 3, sunrise.ppt would be the attribute for the service filesystem in order to
advise the system to deliver the content of this specific file.

5The user already has the knowledge, that his presentation is stored in a file named “sunrise.ppt” on his computer
accessible as “notebook”, and that the video projector is named “projector”. If the user is not sure about these
parameters, his request could be expressed using “LIKE”-statements.

10



The language-definition of PsaQL in BNF is:

<partial_action> ::= USE <action_part> [<ext_action>]
<ext_action> ::= WITH <action_part> [<ext_action>]

<action_part> ::= <attr_constr_def>[ FOR <service_constr_def>]
[ ON <base_constr_def>] |

<service_constr_def>[ ON <base_constr_def>] |
<base_constr_def>

<base_constr_def> ::= BASE <base_constraint>[ AS <name>]
<base_constraint> ::= <name> | LIKE "<partial_name>"

<service_constr_def> ::= SERVICE <service_constraint>[ AS <name>]
<service_constraint> ::= <name> | LIKE <partial_name>

<attr_constr_def> ::= (<name> | LIKE <partial_name>)[ AS <name>]

<name> ::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’,‘_’>}
<partial_name> ::= {<‘a’-‘z’, ‘A’-‘Z’, ‘0’-‘9’,‘^’,‘$’,

‘(’,‘)’,‘[’,‘]’,‘.’,‘+’,‘*’,‘?’, ...>}

To give a second example, another action (the command to send some file from a PDA-computer
as e-mail) could be expressed as follows:

USE mail.eml ON BASE pda
WITH SERVICE LIKE "mail$" AS mail

ON BASE LIKE "mailgateway" AS gateway

The LIKE-statement currently advises the algorithm in charge to interpret the associated cha-
racter chain as a regular expression, which will be applied to the entity’s name as well as to keywords
describing the service/base or a literal description. The AS-statement is used to mark specific parts
of the request in order to identify them in the resulting complete action. In a future version of
PsaQL, the language will be extended to allow by this referencing inside a statement.

Based on this description of a partial action, an action graph of all possible solutions is created
and finally, a complete action is selected (cmp. figure 3). This solution action can be executed
by the pervasive environment. With PsaQL, actions can be defined in any granularity from a
very ambiguous expression up to an almost complete action. We have defined an XML file format
containing all the information needed to execute a complete action (see chapter 5.3). This file can
be used to exchange the action in a platform-independent way between different modules of the
middleware.

A prototype to demonstrate the process of creating a complete action based on a partial action
can be found at http://liris.wh4f.de/perse.

11



5 From user intention to user satisfaction

5.1 Translating a partial action into a complete action

We present in this chapter an algorithm to translate a partial action into a complete action (cmp.
figure 3). A partial action is a formal representation of a user intention whereas a complete action
is a connected graph of services, representing the best combination of services to satisfy the user
intention. The translation process consists of three steps:

1. Translate the user-input (given in PsaQL) into an internal model of a partial action

2. Expand the partial action to an action graph using the service description database, the action
history, the context information and heuristic strategies

3. Select the best solution as complete action

Algorithm 1 The abstract translation algorithm
action onRequestReceived(user intention) // General description of the translation algorithm
1: partial action = parse(user intention)
2: action graph = create actiongraph(partial action)
3: action = select best action(action graph)
4: return action

With some mathematical formalization, we can define step two and three of this algorithm:6

Definition 1 (Partial Action) Let B be the set of bases, S the set of services and S(b) the set of
available services on a base b, where S(b) is equal to S when b =⊥.7 A partial action p, the formal
expression of a user intention, can be modeled as a list of 2-tuples:

p = (e1, · · · , en) | ei = (bi, si) with bi ∈ {⊥} ∪B; si ∈ {⊥} ∪ S(b)
∀i : (bi 6=⊥) ∨ (si 6=⊥)

(1)

Definition 2 (Service Graph) Let E = {ε = (b, s) | b ∈ B, s ∈ S(b)} be the set of all available
services in a pervasive service environment and I(E) ⊆ E × E the set of all possible service inter-
actions within this environment.8 Then we can define a service graph in a part E of the pervasive
service environment as

GE = (E , I); E ⊆ E; I ⊆ I(E) (2)

The set ΓE of all valid service graphs in E is defined as:

ΓE = {(E , I) | (E ⊆ E, I ⊆ I(E))} (3)

Definition 3 (Connected Service Graph) A service graph g = (E , I); I ⊆ I(E) is called
connected if and only if

∀ε0, εn ∈ E , ε0 6= εn : (ε0, εn) ∈ I ∨
(∃ε1, . . . , εn−1 : (εi, εi+1) ∈ I; (i = 0, 1, . . . , n− 1))

(4)

6To simplify the model, we do not consider attributes in the following section, they can be easily added lately.
7⊥ represents “undefined”.
8The interoperability between services is not studied here.

We assume that (ε1, ε2) ∈ I(E) ⇔ ((ε1, ε2) ∈ E × E) ∧ (ε1 is interoperable with ε2).

12



Definition 4 (Solution) A graph gE
p = (E , I); E ⊆ E, I ⊆ I(E) is called solution for a given

partial action p in a pervasive service environment E if and only if

gE
p ∈ ΓE (5)

gE
p is connected (6)

∀e = (b, s) ∈ p ∃ε = (β, σ) ∈ E with


β = b if s =⊥,

σ = s if b =⊥,

(β = b) ∧ (σ = s) otherwise.

(7)

Definition 5 (Action Graph) Let SE
p be the set of all solutions for p in a pervasive service envi-

ronment E. An action graph AE
p ∈ ΓE of a partial action p in the pervasive service environment E

is a connected service graph containing all solutions for p:9

AE
p = (

⋃
(E,I)∈SE

p

E ,
⋃

(E,I)∈SE
p

I ) (8)

Definition 6 (Complete Action) Let C(g, γ) be the function calculating the cost of a solution g
when it is executed in a context γ. Then the complete action cE

p for a given partial action p in a
service environment E is defined as:

C(cE
p , γ) = min{C(gE

p , γ) | gE
p ∈ SE

p } (9)

Let H(p, E, γ) be the function fetching from the execution history the complete action for a
given partial action p and a pervasive service environment E in a context γ. Then, with these
definitions and declarations, we propose the algorithm 2 transforming a user intention p into a
complete action cE

p .10 Starting with an action graph (representing a solution for p), this algorithm
removes step by step the connections (see line 11 of algorithm 2). When a service graph derived
by this has no longer any successors which are solutions (line 16), this service graph is a possible
candidate for the complete action (line 17). The candidate with the minimal cost is selected as
solution of the algorithm.

The complexity of this algorithm is exponential, but it finds always the optimal action for a
given partial action. For small pervasive service environments (small number of bases and services),
this algorithm calculates in a reasonable time the best possible complete action for a given partial
action. Nevertheless, this solution is not appropriate for pervasive service environments of bigger
extend. In order to solve the query in polynomial time, it makes sense to define stricter constraints
or to introduce heuristic approaches.

One such heuristic approach(algorithm 3) bases on the following coloring of the nodes:

• Black nodes εB: ∀εB = (β, σ) : ∃(β, σ) ∈ p

• Red nodes εR: ∀εR = (β, σ) : ∃(β,⊥) ∈ p ∨ ∃(⊥, σ) ∈ p

• White nodes εW : all other nodes
9In some rare cases (when ∀(b, s) ∈ p : b =⊥) it can happen, that AE

p is not unique. If so, algorithm 2 (see below)
has to be executed for each (AE

p )i.
10AE

p can be directly derived from (E, I(E)).

13



Algorithm 2 Exhaustive Translation Algorithm
1: c = H(p,E, γ) // try to find a solution in history
2: if c 6=⊥
3: cE

p = c
4: else
5: fifo A, fifo S
6: push(A,AE

p )
7: while A 6=⊥
8: (E , I) = g = shift(A) // take a service graph from the beginning of the list
9: is leaf = true

10: for each ι ∈ I
11: I ′ = I – {ι} // remove connection ι from I
12: E ′ =

⋃
(ε1,ε2)∈I′{ε1, ε2} // keep only connected elements

13: if g′ = (E ′, I ′) is solution for p
14: push(A,g′) // remember this successor
15: is leaf = false

16: if is leaf
17: push(S,g) // g is a solution candidate

18: g = shift(S)
19: for each g′ ∈ S // find minimal solution
20: if C(g′, γ) < C(g, γ)
21: g = g′

22: cE
p = g

Algorithm 3 Heuristic Translation Algorithm
1: c = H(p,E, γ) // try to find a solution in history
2: if c 6=⊥
3: cE

p = c
4: else
5: list F // black nodes
6: list R // red nodes
7: for each ε = (β, σ) ∈ E
8: if ∃e = (b.s) ∈ p : (b = β) ∧ (s = σ)
9: push(F, ε)

10: else if ∃e = (b.s) ∈ p : ((b = β) ∧ s =⊥) ∨ ((s = σ) ∧ b =⊥)
11: push(R, ε)

12: array D // calculate the minimal distance
13: for each εf ∈ F
14: for each εr ∈ R
15: d = length(dijkstra((E, I(E)),εf ,εr))
16: if d < D[εr]
17: D[εr] = d

// elements of partial action covered only by red nodes:
18: p′ = {e = (b, s) ∈ p | (b = (⊥) ∨ (s =⊥) ∧ (@εf = (β, σ) ∈ F : (b′ = β) ∨ (s′ = σ))}
19: sort(R,D) // sort red nodes by distance
20: for each εR = (β, σ) ∈ R
21: if ∃e = (b, s) ∈ p′ : (b = β) ∨ (s = σ)
22: push(F, εr) // color the node black

// removed satisfied parts from the partial action:
23: p′ = p′ – {e′ = (b′, s′) ∈ p′ | (b′ = β) ∨ (s′ = σ)}
24: cE

p = MCST((E, I(E)),F ) // calculate Minimum Cost Spanning Tree on black nodes

14



We assume that each node wears just one color, with a hierarchy given as: Black > Red > White.
By this, we obtain a partion of E.

The solution we want to find includes all black nodes, some of the red nodes (so that there is
for every e ∈ P an appropriate node in the solution) and maybe some white nodes. To find the
“best” red nodes, we use the following heuristic (see also figure 6):

First we calculate using the Shortest Path Algorithm of Dijkstra [Man89, p. 204] for each
red node εR the distance to all black nodes εB by using a modified cost function CI((εR, εB), γ).
Beginning with the red node of the shortest distance, we examine all red nodes in order of their
distance: If there is a corresponding query part e in the partial action p, which is not already covered
by any black node, we color the node black. We repeat this, until every part of p is covered with a
black node. The remaining red nodes are colored white. Then, using the Minimum Cost Spanning
Tree Algorithm [Man89, p. 208] we extract from (E, I(E)) the graph containing all black nodes as
a complete action.

(a) (b) (c)

Figure 6: In this example, the partial action p contains three elements. Two of them define exactly a
corresponding (black) node in the action graph and one matches to three different (red) nodes (a). From the
red nodes, the one with the nearest distance to a black node is selected and colored black, the others are
colored white (b). In a final step, the Minimum Cost Spanning Tree containing all black nodes is calculated (c).

5.2 Modeling and implementation of action graphs

To represent the action graph and a complete action, we need a suitable data structure. Each used
service is connected with other services, therefore we model the action graph as well as its thinned
out version, the complete action, as a set of channels, connecting output- and input-ports of the
participating services.

Describing a complete action with n participating services as a set of (n−1) channels connecting
2 ∗ (n − 1) input/output ports with the associated services result in the description of 2 ∗ (n − 1)
services, i. e. a redundancy of (n−2) service-descriptions. To avoid useless data overhead, an object-
orientated modeling is suitable where logical associations result in references to the same object.
In addition, each object has by definition its own identity and does not need to be marked further
to be distinguished from other entities.

15



Action

Channel

Stub

Element

Attribute

Port

Service

Base Address

1

1..*

1

2

0..*0..*

1

1

1..*
1

0..*1

0..* 1

0..*

1
0..* 1..*

Figure 7: Class diagram for the internal representation of action graphs and complete actions.

To describe a complete action, we use the object model of figure 7. The utilized classes are:

• Address - Combination of a type and a valid address-string (e.g. "ipv4"/"172.20.0.9:8080")

• Base - Represents a PerseBase, has one or more Addresses and manages Services

• Service - A service published on a Base proposing Ports for data input and output

• Port - Representation for data-flow input and output of a Service. Contains information about
the type of data-flows accepted/produced and the direction of the data-flow (in/out)

• Element - Combination of a Service with adaptation information (Attributes)

• Attribute - A string transmitted to a service to adapt it to the specific needs of a PerSE-action

• Stub - Combination of an Element with a service-Port

• Channel - The two Stubs forming a data-flow between two services

• Action - A collection of Channels

16



The objects which form the action graph for a given partial action as well as the resulting
complete action are created based on a database connected to the system performing the translation
process.11 This database contains descriptions of available PerseBases, services and the description
of these services. Where such a database initially just contains information about local available
services, each PerseBase supports a HTTP-based interface to access this information. By requesting
this information in an intelligent way it is possible to extend the local a database until it contains
all the data needed to build the action graph.12

The PerseBase description interface contains three kinds of queries:

• allObjects – Returns a list of all known neighbor-bases (including the requested PerseBase
itself) as well as their connection information (IP-address for instance) and other meta-data

• services – Returns a list of local available services accompanied with meta data like name,
keywords etc.

• serviceDescription – Returns a detailed description of a given service containing information
about ports, treatable data types and so on

To distinguish bases, services and service-ports internally in a unique way and to avoid name
collisions between these components, 128-bit Global Universal Identifiers (GUIDs) are used. They
are oriented on Microsoft COM GUIDs and based on the Universally Unique Identifiers (UUID) used
in DCE RPC. The identifiers are normally represented by 32 hexadecimal digits in five groups like
{e531bc65-f2d1-4d47-8a6e-d96d80e9fb65}. A decentralized algorithm which assure uniqueness
is used to create this identifiers [Box97].

The results of the described interface requests are transmitted using specific XML schemas.
Examples for possible requests results can be found in annex A.

The interoperability of services is determined using the accepted data types information of
a service description. In near future, an ontology based on OWL ([MvH04], [MSZ01]) will be
established in PerSE to support inheritance of data-types (e.g. define text/html as a child of
text/plain) in by this a service-combination can be based on super-types and sub-types.

5.3 Complete action representation

When a complete action is selected from the action graph in respect of the selection constraints
defined by the context information and the historical knowledge, the complete action has to be
executed. To exchange the modeled complete action with other, independent entities, for instance
an action execution module or a module managing the execution history, we have defined an
XML file format containing all the information from the internal model. The XML file is intend
to represent complete actions, but can describe action graphs as well. By this it can serve as an
intermediate exchange format when splitting up the translating algorithm into several independent
parts being executed independently, e.g. when a user feedback needs to be included into the solution
finding process.

11Normally, this will be a PerseBase
12This is part of the concrete implementation, two possibilities to do this will be introduced in chapter 6. In

addition, an independent approach of filling the local database proactive is sketched in annex B.

17



The XML Document Type Definition we have defined is illustrated in the following example
(this could be the result for the partial action introduced as example in chapter 3):

Complete action expressed in XML
<?xml version="1.0" encoding="ISO-8859-1" ?>
<action id="action_1117551504-11e33">

<channel id="channel_dab">
<out element_id="element_1caf" port_id="port_1327" />
<in element_id="element_24b4" port_id="port_25ee" />

</channel>

<element id="element_24b4" service_id="service_c67">
<attribute id="attribute_597">sunrise.ppt</attribute>

</element>

<element id="element_1caf" service_id="service_957" />

<service id="service_957" name="beamer" base_id="base_1492" />
<!-- This is a projector for VGA information -->

<service id="service_c67" name="fs" base_id="base_11ec" />
<!-- Standard filesystem service -->

<base id="base_1492" name="rlaurini">
<!-- This computer is fixed in classroom 101 -->
<address type="ip4">172.20.0.72:8080</address>

</base>
<base id="base_11ec" name="Notebook">

<!-- Laptop used by A. M. -->
<address type="ip4">172.20.0.9:8080</address>

</base>

<port id="port_25ee" service_id="service_c67" direction="out">
<!-- Read file -->
<type>text/plain</type>
<type>application/binary</type>

</port>
<port id="port_1327" service_id="service_957" direction="in">

<!-- Save file -->
<type>video/avi</type>
<type>video/mpeg</type>
<type>video/vga</type>
<type>application/powerpoint</type>
<type>application/binary</type>

</port>

</action>

18



5.4 Evaluation metrics for a pervasive service environment

To achieve the goal of seamless integration of the pervasive computing system into the everyday
life environment of a user, it is important that the user percept nearly no delay between expressing
his intention and receiving the result of it by the executed action. This leads to the goal of short
execution time for any action algorithm. This is directly related with the user satisfaction, the most
important aspect which is nevertheless difficult to measure.

The execution time of the transforming process from a partial action to a complete action
is just little connected with the complexity of the algorithm, in a pervasive network with just a
couple of services data transmission costs are much more important. This defines the challenge of
minimizing the network data exchange, viz minimizing the size of transferred service descriptions
and the transmission distance. All these parameters should not blow the execution of the translating
process up when increasing the number of known services and the length of the requests, that means
scalability as a development goal.

Other important issues, when implementing the algorithms on a pervasive PerseBase on a smart
device like a PDA or a wristwatch are the minimization of CPU-usage to save energy resources as
well as minimizing the memory usage to save little memory resources.

In summary the following domains for measuring algorithms translating a user intention into a
complete action have been identified:

• User satisfaction as the most important goal of algorithm design in a pervasive environment.

• Execution time as the factor having the biggest impact on the user satisfaction.

• Network data transmission as having an important impact on the execution time. Beside the
network speed which cannot be influenced by the design of the translating algorithm, the size
of the transferred services and the transmission distance constitute this value.

• Scalability of the algorithm when increasing the number of available services or the length of
the query (see chapter 6).

• Pervasive Computing Constraints as an accountable usage of CPU and memory resources.

The process of transforming a partial action into a complete action relies on a database con-
taining descriptions of available services in the pervasive environment. This influences directly the
amount of the transferred data. Different possibilities to transfer the service description into the
local database before being accessed by the translating algorithm and there impacts on the algo-
rithmic performance are discussed in the following chapter.

19



6 Benchmark Results

To test our prototype implementation of a simple transforming algorithm, we evaluated the volume
of the transferred data when varying the number of available PerseBases from 10 to 1000 in steps
of 10 bases. To examine the scalability of the solution, we introduced a scalability factor which
calculates the average distance covered by transmitted data:

fscal =

∑
msg size(msg) ∗ distance(msg)∑

msg size(msg)

A first implementation (“Algorithm A”) fetches the total available service description at the begin-
ning and performs the creation of a complete action on base of these descriptions. This implementa-
tion corresponds in its benchmark results to the exhaustive algorithm presented in section 5.1. In a
second implementation (“Algorithm B”) we have tried to minimize the amount of transferred data.
To reach this goal, we introduced some constraints for the implementation of this prototype. The
selection of the complete action from the action graph is done on-the-fly and the implementation
fetches at the same time the service descriptions from the network, just until the algorithm found a
solution. Another restriction of this second implementation is the composition of services by linear
concatenation.

The test environments have been created with a uniform distribution of n PerseBases in a region
of fixed size using the PlnGen algorithm explained in appendix C.13 For each testbed size, three
independent testbeds have been created to get average results. For each node, uniformly between
two and five services have been assigned. The type of each service has been estimated normally.14

In the same way, for each service-type the input- and output types have been selected.15 The
connections between the simulated bases try to model a heterogeneous pervasive network with
short distance and long distance connections. We analyzed queries of the type “USE BASE x WITH
BASE y...” with a length varying from two to ten enchained entities. For each query length, two
queries have been defined randomly and the average results of executing this queries in the testbeds
of a fixed size have been examined.

The results of our first test runs show that the currently implemented algorithm reacts very
sensitively to an increasing of the number of available PerseBases. It is at most the aspect of the
increasing distance between the requesting and the service-providing PerseBase raising the value
exponentially. A variation of the query size has nearly no impact on the scalability factor. In
all cases, algorithm B is by far better than algorithm A (which represents an upper border for
algorithm B). The results are shown in figure 8 and 9.

The comparison of the two implemented algorithms shows that there remain a lot of possibilities
to optimize the way of translating a PsaQL request into a complete action. The research is just
started at this point, further improvements will be achieved by taking into account the execution
history and the the context information, both currently not implemented.

13Testbed-parameters: regionSize = 1000×1000, nodeCount = {10, 20, . . . , 1000}, minimalConnNumber = 4, stan-
dardDeviation = 3.0, backConnDistance = 20.

14Using the formula fi(n) = abs([random normal(1, 0, n/3)]) mod n where n is the number of service-types (100)
15n = 10

20



scalability factor

0

5000

10000

15000

20000

25000

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

43
0

46
0

49
0

52
0

55
0

58
0

61
0

64
0

67
0

70
0

73
0

76
0

79
0

82
0

85
0

88
0

91
0

94
0

97
0
10

00

testbedsize

Algorithm A Algorithm B

Figure 8: The progression of the scalability factor as introduced in the text when varying the testbed size.

scalability factor

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8 9 10

query length

Algorithm A Algoritm B

Figure 9: The variation of the scalability factor when increasing the query length.

21



7 Conclusion and open issues

7.1 Summary

This work has presented a strategy and a methodology to take the user intention into account when
composing service-based actions in a pervasive service environment. It introduced PsaQL, as far as
we know the first language to express user intention (called partial actions) in a pervasive service
environment. We outlined algorithms extending this partial action to a executable graph of services
(complete action) using the service descriptions, the context information and the execution history.

We presented an object-oriented modeling of complete actions as well as the definition of an
interchangeable data format for these structures. The enchainment of several pervasive services
located on different bases is modeled using virtual channels between the input ports and the output
ports of the services, the final result of the calculation is expressed using an XML format.

Finally, some metrics supposed to model the user satisfaction has been worked out as reasonable
measurement categories for algorithms creating complete actions for pervasive service environments
on the basis of a user defined partial action. The work identified the scalability, based on data
transmission time and distance as the most influencing part of this benchmark and therefore, a
prototype implementation of such an algorithm was tested by measuring the scalability by varying
the size of the simulated pervasive service environment and the scope of the user intention. The
benchmark shows amongst others, that the introduction of translation limits can help to design
implementations with by far better scalability results.

7.2 Contribution

• Modeling of the concepts partial action, action graph, and complete action in the scope of
PerSE, a non-centralized pervasive service environment connecting the services provided on
heterogeneous devices.

• Development of PsaQL, to the best of our knowledge the first formal language to describe
service action queries in a pervasive environment in an intuitive and flexible manner.

• Identifying of algorithms transforming a user intention into an executable complete action
using the service descriptions, the execution history, and context information.

• Propositions for an implementation of the transformation algorithm by presenting an object-
orientated model to describe action graphs and complete actions, an XML-based exchange
format, and examples for communication APIs.

• Considerations about performance measurements and benchmark results for a prototype im-
plementation.

7.3 Perspective

Following this research work, a couple of issues remain open to be developed in future time. Cap-
turing the user intention using PsaQL will not stay the last conclusion of wisdom, more seamless
ways like voice or gesture recognition will be developed. Independent of the kind of expression the

22



user selects to communicate his intention, PsaQL will be an easy interface between the intention
capturing module and the module developing the complete action to execute. The Pervasive Ser-
vice Action Query Language itself can be further improved by adding more language features as
references inside or outside a request. Nevertheless, to protect the easy-to-read way of the language
it has to be kept as simple as possible.

Currently, the context based selection process in PerSE is not completely elaborated, but the
contextual platform hammered out by Ejigu in [ESB05] introduces the main principles context
filter, reasoning and data mining and decision module. The knowledge from this platform will be
introduced into the user intention processing of PerSE.

Similarly, the implemented algorithm will be further developed to take the execution history into
account. This is intended to lower significantly the execution time of the translation algorithm, as
the typical actions in a pervasive service environment (like the exemplary presented action to show
a presentation from a mobile device on a fixed projector) are frequently reexecuted. We estimate
that about 90% of the actions can completely or partially base on already executed actions stored
in the history, and just a small amount of 10 % has to be completely new calculated.

Benchmark results in chapter 6 show that the way how to request service and base descriptions
is a screw to adjust user satisfaction. Different algorithms to access and update service descriptions
need to be developed and compared for certain use cases. Possible parameters are: Proactive or
reactive service description demands, complexity of transmitted descriptive information, time of
validity, caching, hierarchical ordering of services and so on. Appendix B presents exemplary a way
of distributing service descriptions proactive without congesting the pervasive network with useless
information.

When a complete action is built, it has to be executed in the pervasive service environment.
Further research will develop a module to execute complete actions reliably and efficiently.

As mentioned already in chapter 2, security will be one of the hottest subjects in further PerSE-
development. The current presumption that all services can be used by everyone cannot be hold
in real world application. A system of authentication and authorization based on roles and access
control lists will be implemented in a future work. Encryption of the exchanged data can currently
be easily performed by using the HTTPS-Protocol for data transfers. Nevertheless, it rests to discuss
until which point additional computing effort for encryption is reasonable in a pervasive application
and where it is more intelligent to transfer data unencrypted to gain a less resource consummating
data transfer.

Albeit the further research which has to be done until a pervasive service environment like
presented in this work will be used in everyday live, with this master thesis a step further in this
direction is done. Based on the presented transit from a diffuse expressed user intention by the
way of a formal representation of a complete action to the expression and finally execution of a
complete action, the pervasive service environment will be the invisible system adapting to the
specific situation and doing what the user intends to his satisfaction.

23



References

[BB03] Sven Buchholz and Thomas Buchholz, Adaptive content networking, ISICT ’03: Proceedings
of the 1st international symposium on Information and communication technologies, Trinity
College Dublin, 2003, pp. 213–219.

[Box97] Don Box, Essential com, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1997, Foreword By-Grady Booch and Foreword By-Charlie Kindel.

[Bra05] Ingo Braun, Semantic web services: A logic-based framework to dynamic and approximate com-
position by constraints, Master-Thesis INSA de Lyon, unpublished, June 2005.

[Dat86] C. J. Date, A guide to the sql standard, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[EKvBS04] Khalil El-Khatib, Gregor v. Bochmann, and Abdulmotaleb El Saddik, A dis-
tributed content adaptation framework for content distribution networks (online:
http://beethoven.site.uottawa.ca/dsrg/PublicDocuments/Publications/ElKh04c.pdf), 2004,
last checked: 2005-06-15.

[ESB05] Dejene Ejigu, Vasile-Marian Scuturici, and Lionel Brunie, Neighbourhood based architecture for
context-aware platform in pervasive computing, unpublished, 2005.

[GSSS02] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste, Project aura: Toward
distraction-free pervasive computing, IEEE Pervasive Computing 1 (2002), no. 2, 22–31.

[GWvB+01] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler, N. Borisov,
S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R. H. Katz, Z. M. Mao, S. Ross, B. Zhao, and
Robert C. Holte, The ninja architecture for robust internet-scale systems and services, IEEE
Intelligent Systems, vol. 35, Elsevier North-Holland, Inc., New York, NY, USA, March 2001,
pp. 473–497.

[Man89] Udi Manber, Introduction to algorithms: A creative approach, Addison-Wesley Longman Pu-
blishing Co., Inc., Boston, MA, USA, 1989.

[Mos03] Soraya Kouadri Mostéfaoui, A Context-Based Services and Discovery and Composition Frame-
work for Wireless Environments, Proc. of the 3rd IASTED International Conference on Wireless
and Optical Communications (WOC’2003) (Banff, Canada), 14-16 July 2003, pp. 637–642.

[MSZ01] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng, Semantic web services, IEEE Intelligent
Systems, vol. 16, IEEE Educational Activities Department, March 2001, pp. 56–53.

[MvH04] Deborah L. McGuinness and Frank van Harmelen, OWL Web Ontology Language Overview
(online: http://www.w3.org/TR/2004/REC-owl-features-20040210/), 2004-02-10, last checked:
2005-06-15.

[MYA+05] Jianhua Ma, Laurence T. Yang, Bernady O. Apduhan, Runhe Hunag, Leonard Barolli, and
Mokoto Takizawa, Towards a smart world and ubiquitous intelligence: A walktrough from smart
things to smart hyperspaces and ubickids, International Journal of Pervasive Computing and
Communications, vol. 1, Troubador Publishing Ltd., March 2005, pp. 53–68.

[NSDM03] Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and Marina Mongiello, A system
for principled matchmaking in an electronic marketplace., WWW, 2003, pp. 321–330.

[Ohl03] Lars Ohlinger, plus-minus: Digitalrecorder - Die Angst der Werbeindustrie (onli-
ne: http://www.sr-online.de/statisch/Programm/Fernsehen/ARD/Plusminus/20030729/ the-
ma05.html), 2003-07-29, last checked: 2005-06-15.

[PM94] Claudia Popien and Bernd Meyer, A service request description language, FORTE’94, Chapman
& Hall, Bern, January 1994, pp. 14–32.

24



[RC03] Anand Ranganathan and Roy H. Campbell, An infrastructure for context-awareness based on
first order logic, Personal and Ubiquitous Computing, vol. 7, Springer-Verlag London Ltd,
December 2003, pp. 353–364.

[RHC+02] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganat, Roy H. Campbell, and
Klara Nahrstedt, Gaia: A middleware infrastructure to enable active spaces, IEEE Pervasive
Computing (2002), 74–83.

[SdF03] Mithun Sheshagiri, Marie desJardins, and Tim Finin, A planner for composing services de-
scribed in daml-s, Proceedings of ICAPS’03 Workshop on Planning for Web Services, June
2003.

[SG03] João Pedro Sousa and David Garlan, Improving user-awareness by factoring it out of applica-
tions, UbiSys’03 - System Support for Ubiquitous Computing Workshop, October 12 2003.

[SPAS03] Katia P. Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan, Automated
discovery, interaction and composition of semantic web services., J. Web Sem. 1 (2003), no. 1,
27–46.

[SPB05] Rachid Saadi, Jean-Marc Pieson, and Lionel Brunie, APC: Access pass certificate. distrust
certification model for large access in pervasive environment, IPCS’05, 11-14 July 2005.

[SPP+03] Umar Saif, Hubert Pham, Justin Mazzola Paluska, Jason Waterman, Chris Terman, and Ste-
ve Ward, A case for goal-oriented programming semantics, UbiSys’03 - System Support for
Ubiquitous Computing Workshop, October 12 2003.

[SvdAB+03] Steffen Staab, Wil M. P. van der Aalst, V. Richard Benjamins, Amit P. Sheth, John A. Miller,
Christoph Bussler, Alexander Maedche, Dieter Fensel, and Dennis Gannon, Web services: Been
there, done that?, IEEE Intelligent Systems 18 (2003), no. 1, 72–85.

[Unt05] TC Unterhaltungselektronik, Tvoon media center (online: http://www.tvoon.de/), 2005-02-15,
last checked: 2005-06-15.

[VR04] Maja Vukovic and Peter Robinson, Adaptive, planning-based, web service composition for con-
text awareness, Second International Conference on Pervasive Computing, April 2004.

[VRV05] Mathieu Vallée, Fano Ramparany, and Laurent Vercouter, Composition flexible de services
d’objets communicants, UBIMOB 05, Mai 31 - June 3 2005.

[Wei91] Mark Weiser, The Computer for the 21st Century, Scientific American, September 1991, pp. 94–
10.

[Wei96] , Ubiquitous Computing (online: http://www.ubiq.com/hypertext/weiser/UbiHome.html),
1996-03-17, last checked: 2005-06-15.

25



Glossary16

Bluetooth An industrial specification for wireless personal area networks, range 10m–100m

BNF Backus-Naur Form, a metasyntax used to express context-free grammars: that is, a formal
way to describe formal languages

Ethernet A frame-based computer networking technology for local area networks

HMI Human Machine Interface (User Interface), the aggregate of means by which people (the
users) interact with a particular machine, device, computer program or other complex tool

IEEE 802.11b/g A synonym for WLAN

LIRIS Laboratoire d’InfoRmatique en Images et Systèmes d’information, Lyon Research Center
for Images and Intelligent Information Systems

OWL-S Web Ontology Language, a markup language for publishing and sharing data using on-
tologies on the Internet

PDA Personal Digital Assistant, handheld devices that were originally designed as personal orga-
nizers, but became much more versatile over the years

PerSE Pervasive Service Environment, a middleware developed at LIRIS managing a complex
computer system consisting of embedded services, cmp. chapter 3

Pervasive computing The pervasive computing integrates computation seamlessly into the en-
vironment, rather than having computers which are distinct objects

PsaQL Pervasive Service Action Query Language, a formal language to describe service requests
in a pervasive service environment, developed in this work (cmp. chapter 4)

Service An application without HMI performing a specific task and accessible via an application
programming interface

SQL Structured Query Language, the most popular computer language used to create, modify,
and retrieve data from relational database management systems

Ubiquitous computing synonym for pervasive computing

Web Service A Web Service is a collection of protocols and standards used for exchanging data
between applications using the Internet or another appropriate network

WiFi A promotional labeling of WLAN

WLAN Wireless LAN, a wireless local area network that uses radio waves as its carrier: the last
link with the users is wireless, the backbone network usually uses cables

HTTP(S) HyperText Transfer Protocol (Secure), the primary method used to convey information
on the World Wide Web.

XML Extensible Markup Language, a text-based general-purpose markup language to structure
data semantically

16Created with the help of Wikipedia, the free encyclopedia (http://wikipedia.org)

26



A PerSE-Base Description Interface

To share the information about available services in the pervasive environment with other Per-
seBases, each PerseBase supports a set of commands resulting in specific XML-responses (cmp.
chapter 5.2). In this annex, responses for each command are exemplary shown.

The allObjects-request reveals all known PerseBases from the demanded database:

allObjects.xml
<objects>

<object>
<name>Notebook</name>
<guid>{ACFC602D-9A76-4cec-8D56-DBF517EB711C}</guid>
<doc>services.xml; serviceDescriptionByGUID.xml?serviceGUID</doc>
<addresses>

<ipv4>172.20.0.9:8080</ipv4>
</addresses>
<description>Laptop used by A. M.</description>
<keywords>Notebook; Laptop; Portable</keywords>

</object>

<object>
<name>ClassroomServer</name>
<guid>{f1da6754-e4ee-42d7-a631-d27753f08d86}</guid>
<doc>services.xml; serviceDescriptionByGUID.xml?serviceGUID</doc>
<addresses>

<ipv4>172.20.0.72:8080</ipv4>
</addresses>
<description>This computer is fixed in classroom 101</description>
<keywords>Classroom; Presentation; Projection</keywords>

</object>

<object>
<name>pda_z</name>
<guid>{015f9085-8e26-4d46-abfa-f274a4b69b1f}</guid>
<doc>services.xml; serviceDescriptionByGUID.xml?serviceGUID</doc>
<addresses>

<ipv4>172.20.0.112:8080</ipv4>
<ipv6>fe80:0000:0000:0000:020d:93ff:fe72:da6a:8080</ipv6>
<dns>pda.personal.name:8080</dns>

</addresses>
<description>PDA of M. Z.</description>
<keywords>Notes-Taker; Palm; PDA; Mobile</keywords>

</object>
</objects>

27



The services-request returns information about local available services:

services.xml
<services>

<service>
<name>FileSystem</name>
<guid>{EFBF165F-E665-4388-966B-83ED31085D77}</guid>
<description>Access to filesystem</description>
<keywords>FileSystem</keywords>
<parameters>

<parameter>filename</parameter>
</parameters>

</service>
<service>

<name>HTMLViewer</name>
<guid>{2F2EA93A-081A-495d-8FB6-0EC80D86A182}</guid>
<description>View HTML files</description>
<keywords>View; HTML</keywords>
<parameters>

<parameter>URL</parameter>
</parameters>

</service>
</services>

For each service it is possible to get detailed information using the serviceDescription-request in
combination with the service’s GUID:

serviceDescriptionByGUID.xml?{2F2EA93A-081A-495d-8FB6-0EC80D86A182}
<service>

<name>HTMLViewer</name>
<guid>{2F2EA93A-081A-495d-8FB6-0EC80D86A182}</guid>
<description>View HTML files</description>
<keywords>View; HTML</keywords>
<parameters>

<parameter>URL</parameter>
</parameters>
<ports>

<port>
<guid>{9DE5409F-A3A3-453b-A103-1A060EC910D3}</guid>
<name>channel1</name>
<direction>in</direction>
<accepted_data_types>text/ascii</accepted_data_types>

</port>
</ports>

</service>

28



B Sparse Flooding Algorithm

In chapter 7 the question of how to assure the best local availability of service descriptions was
raised. One possibility, proposed in this appendix, is to distribute service information proactive to
the machines where they are needed in the pervasive network. While this attempt can be considered
as theoretical reasonable, unfortunately there was not enough time and resources to develop the
idea further on and to verify its capability in a benchmark environment.

Introduction

A PerSE service network (ServiceNet) consists of two main types of entities: PerSE Services,
that means a long running application as well as any other data treating unit, a data source like
a sensor, a transforming algorithm like an adopted classical Web Service as well as data drains,
a video projector for example. Each service is managed (together with other – maybe related –
services) by a PerseBase (cmp. figure 2 on page 8). These core entities are interconnected (with
a wired connection or with a wireless link like Bluetooth or WiFi) and therefore responsible for
these connections, too. By using this network, each PerseBase is able to run the services offered by
any other PerseBase in the network in responding to a user demand (action). To do this efficiently,
the PerseBase is using a precalculated action graph which is based on its or the neighbor’s action
graph history and the known entity descriptions respectively.

The information about each entity (service, PerseBase) consist of a more or less statically
description, the more dynamical context (managed by the service’s PerseBase) and some meta-
information (Entity-Identificator (EID), Entity-Type) combined on an InformationCard (This can
be considered like an extended identity card of the entity). Each InformationCard is marked with a
timestamp (to decide which the newest information set in doubts is) and a validity-time (used to help
the management of InformationCards and to estimate the validity of action graphs based on this
information set). Each PerseBase is storing InformationCards in a database called InformationDeck
(an exemplary network is sketched in figure 10).

S1 S2 S3

PB1

S4

S5

S6

PB2

PB3

PB4

S7

S8

C1 C2

C3

C4

S1, S2, S3,
PB1, C1, C3
PB4, S7, S8
PB3, C4

S7, S8, PB4,
C3, C4,
PB3, S6, C2,
PB2, S4, S5

S4, S5, 
PB2, C2,
PB3, C1, C4,
PB1, C3, S3

PB3, S6, 
C1, C2, C4
PB2, S5,
PB4, S7, S8

Figure 10: Description dispertion: Every PerseBase manages an InformationDeck storing the descriptions
of the own and interesting alien entities.

29



Apart from this descriptional knowledge, each PerseBase has (after a sufficient amount of time)
as well a kind of “historical knowledge” in the form of ancient used action graphs which maybe can
be reused in future (if they are still valid). While the first steps in trying to react to an user action
is the reuse of already existing action graphs, the creation of new, specific action graphs based on
the current entities’ InformationCards represents nevertheless an important part in PerSE’s action
treatment. This calculation is performed by the action handling PerseBase, so this base needs for
the processes of service and base discovery a partial global knowledge of the ServiceNet, sufficient
information about all the services, the base is “interested in”. To assure that each PerseBase has
the information needed for the action graph calculation, a kind of intelligent distribution algorithm
is needed.

By designing an information distribution algorithm for a pervasive computing environment one
has to keep in mind that the context of a service can change rapidly which means that the data
stored on the service’s information card changes and that this update has to be distributed to
interested recipients as well. To increase the network’s fault-tolerance and to avoid bottle-necks as
well as single points of failure we have decided to provide in contradiction to classical attempts like
Web Services (Service Registry, UDDI) or DAISGR/OGSA-DAI in computational grids a solution
independent from a central server/directory. While the time for distributing information changes
has to stay for the mentioned reasons in a pervasive environment as minimal as possible, we are
also confronted with small bandwidth connections (like Bluetooth) or narrow-chested smart devi-
ces in some configurations demanding a minimization of the meta information transport and an
optimization of the InformationDeck management.

The algorithm

To provide the possibility to calculate a new action graph in time, the PerseBase’s InformationDeck
does not only hold the InformationCards of the entities, the base is responsible for (that means its
own InfoCard with information about connections to other PerseBases as well as the InfoCards of
all connected services), but also the InformationCards from all entities it is interested in (services
and the corresponding PerseBases). To obtain this knowledge, InfoCards can be exchanged among
the bases sending Description Exchange Messages (DXMs) to each other. A Full DXM contains
the entity’s complete InformationCard as stored in the emitting PerseBase’s deck, a Partial DXM,
which is emitted after a record update in the InformationDeck, just contains the meta-information
(EID, timestamp, previous timestamp (to assure integrity), and validity time) accompanied by the
records which have changed. Combined with an algorithm of “Dull Discard” which means that each
PerseBase just stores (and propagates) information about the services it is interested in we receive
a sparse flooding algorithm (EID + Card Timestamp provide a unique DXM identifier needed to
avoid loops). Reasons for discarding a DXM are widespread and depend on the implementation and
configuration of the PerseBase, this can be reasons like “information to old”, “service to far away”,
“service to slow”, “service not matching another quality criteria” or “already enough similar/better
services in the InformationDeck” for instance. This mechanism leads to a reduction of information in
the network in function of distance and service’s value while still maximizing the user’s satisfaction.
The behaviour is outlined in a pseudo-code style in algorithm 4.

A second way to initiate the emission of a DXM message is a DXM Request for all or specific
entities stored in a neighbor’s InformationDeck. These requests are needed for the initial creation
of an InformationDeck, to obtain information about entities mentioned in an (historical) action
graph, or to gain information about intermediate PerseBases and their connections. Another use

30



case is the reaction to a received Partial DXM for an entity where no InformationCard can be found
in the InformationDeck. The reaction to a Full DXM request is sketched in algorithm 4.

Stressing Neighbor Problem

The mechanism of Dull Discard in combination with Partial DXMs and DXM Request can lead
to an interesting ping-pong effect, which we call the Stressing Neighbor Problem: A PerseBase (A)
floods information about a service (S ) to a neighbor PerseBase B which is assessing the service as
“uninteresting” and discarding the DXM. Now S is adapting (e.g. the context of S is changing) and
A is updating his InformationDeck followed by a Partial DXM emitted to its neighbors. B receives
the message, is not able to determine the “level of interest” from the given values and therefore
requesting a Full DXM from A. A has to response with a Full DXM just to help B to decide that
it is still not interested in S and discards all information about S (cmp. figure 11).

A BS
full DXM

full DXM (S)

f/p DXM

partial DXM (S)

DXM Request (S)

full DXM (S)

Unnecessary
data exchange

    save in InformationDeck
    discard (not interesting)
    found in InformationDeck
    not found in InfoDeck
    read from InfoDeck

Figure 11: The Stressing Neighbor Problem: B requests a Full DXM of S from A in reaction to a received
Partial DXM, just to discard this information afterwards.

In small networks with cheap connections containing no loop reactions this superfluous commu-
nication does not lead into big troubles and can easily be ignored. To handle the Stressing Neighbor
Problem, a PerseBase can remember why it suppressed the information of which entity and just
request a Full DXM when a record changed that justified this decision. But by this, the PerseBase
stores a lot of rubbish it is not interested in and it needs a management to maintain this mountain
of garbage (LFU strategies, validity time,. . . ). Also transferring the problem to the neighbors (just
send information to a neighbor when he did not discard the last DXM) is not solving it, but incre-
asing the communication costs by introducing special deny messages and “I’ve changed my mind”
notes.

Open questions

Apart from settle this question, there are still a lot of other challenges connected to the introduced
sparse flooding algorithm which are leading to further research: Which exactly are the records on
the InformationCards, what can be considered as “description”, what as “context”? How to esti-
mate the values of this context (measurements, still-alive-packets)? How to interpret these values
and to compare services with each other? One of the main objects is to define rules for assessing a
DXM as “interesting” and “not interesting” representing the heart of the sparse flooding algorithm.
At the level of implementation, decisions have to be made on how to represent the information on

31



Algorithm 4 The main methods of the sparse flooding algorithm
action onMsgReceived(msg,emitter) // Reception of a Full or Partial Descr. Exchange Message (DXM)
1: if not(isEntityInDeck(msg.eid)) // No information about the entity in database
2: if not(isFullDXM(msg))
3: sendFullDXMRequest(emitter,msg.eid)
4: return // End action and wait for new message

5: if not(isInteresting(msg))
6: return // Discard message

7: storeEntityInDeck(msg)

8: for each neighbors as neighbor
9: if neighbor 6= emitter

10: sendDXM(neighbor,msg) // Flood full message

11: else // There is already a knowledge about the entity in database
12: currentInfo = getEntityFromDeck(msg.eid)

13: if msg.timestamp 6 currentInfo.timestamp
14: return // Message to old

// Make msg a complete InformationCard
15: if not(isFullDXM(msg))
16: msg = mergeInfos(currentInfo,msg)

// Get the records which have changed
17: infoDiff = getInfoChanges(currentInfo,msg)

18: if isEmpty(infoDiff)
19: return // Nothing has changed

20: if not(isInteresting(msg))
21: removeEntityFromDeck(msg.eid)
22: return // Discard entity

23: storeEntityInDeck(msg)

24: for each neighbors as neighbor
25: if neighbor 6= emitter
26: sendDXM(neighbor,infoDiff) // Flood partial message

27: return

action onFullDXMRequestReceived(eid,questioner) // Reception of a Full DXM request
1: if eid 6= null // Send particular InformationCard
2: infoCard = getEntityFromDeck(eid)
3: sendDXM(questioner,infoCard)

4: else // Demand for all known entities
5: for each entitiesInDeck as infoCard
6: sendDXM(questioner,infoCard)

7: return

32



the entity’s InformationCard (hierarchically or “flat”? Provide generic templates to reduce trans-
portation costs further?) as well as defining a structure to organize the InformationDeck in a way it
can be easily accessed and updated, but is also prepared to support a fast action graph calculation.
These considerations lead to open questions about the handling of physical limits which can likely
be found when implementing PerseBases (together with their corresponding InformationDecks) on
smart devices. Working in a pervasive and hereby inevitably vulnerable environment pose security
questions, too: How to assure integrity of DXMs? How to assure authentication of DXMs? Is si-
gning an appropriate way? But do we need different “level of trusts” then based on computational
power of a PerseBase? At the moment, the sparse flooding algorithm seems to lead to a further
improvement of the existing way of information distribution in PerSE, but the experiments to
prove this superiority are not yet finished.

33



C The PLNGen Algorithm

The PlnGen algorithm generates efficiently Pseudo Local Network structures. Pseudo Local Net-
works normaly have several local and a few distant connections. Based on a number of random
decisions and designed with the goal of creating complex structures with a non-complex algorithm,
they neither reflect correctly natural computer nor Small-World networks. Nevertheless, these net-
works can be used to simulate on a very low level heterogenious, partially connected networks (like
networks of pervasive entities) formed with local network-mediums like WLAN or Bluetooth. The
algorithm has a run-time complexity of O(n) as well as a memory complexity of O(n).

The main idea of the algorithm is to distribute normally the network nodes on an area of fixed
size and to benefit from this random distribution sequence. During the distribution of the nodes,
connections with backConnDistance d predecessors are established. For each node, the connectivity
ci (ci < d) will be fixed with a normal random generator. In the following consolidation phase, just
the ci shortest connections of each node will be preserved while the other (b− ci) connections will
be eliminated. Due to the random sequence of node-distribution, long distance connections will be
preserved while short distance connections nevertheless will be favored.

Algorithm 5 The PlnGen algorithm
input regionSize // The dimensions of the region, in which the network resides
input nodeCount // The number of nodes in the network
input minimalConnNumber // Minimal connections of each node
input standardDeviation // Standard deviation to estimate node connectivity
input backConnDistance // The backward connection distance

output nodes // Container for the PLN

1: for i = 0; i < nodeCount; i++

// Place the node in the region
2: nodes[i].coordinates = random uniform point(regionSize)

// Create basic connections
3: for k = 0; i > 0 && k < min(backConnDistance,i); k++
4: j = i-k-1 // Select partner

// Calculate distance
5: distance = get distance(nodes[i].coordinates,nodes[j].coordinates)

// Store connections
6: nodes[i].connections[j] = distance
7: nodes[j].connections[i] = distance

// Define connectivity (randomly min+λ)
8: nodes[i].connectivity = minimalConnNumber+abs(random normal(0,standardDeviation))

// Consolidate connections
9: for each i in random permute(0..nodeCount-1)

10: partners = sort by distance(index(nodes[i].connections))

// Delete the longest connections
11: for k = partners.size-1; k > 0 && nodes[i].connections.size > nodes[i].connectivity; k- -
12: j = partners[k]
13: if nodes[j].connections.size > nodes[j].connectivity // if partner is not already to less connected
14: delete(nodes[i].connections[j])
15: delete(nodes[j].connections[i])

34



A lot of algorithms to generate networks already exist, like for Small-World Networks presented
by Kleinberg17 as well as research is done, for example by Adamic18. Since the PlnGen algorithm
does not try to create real Small-World Networks, it can meet a lower complexity of O(n) then
more strict approaches. A lot of references about the subject of network theory are collected by
Cosma Shalizi.19

Some results of the PlnGen algorithm are presented in figure 12. An interactive demo can be
found at http://liris.wh4f.de/pln_gen_demo.html.

Figure 12: Pseudo Local Networks, generated with the PlnGen algorithm. The networks consists of 30, 50,
100 and 500 nodes respectively. The minimal connection number is always 2, connection number standard
deviation 2.0 and backward connection distance 20. Each network area has a size of 500x500.

17http://doi.acm.org/10.1145/335305.335325
18http://www.hpl.hp.com/research/idl/papers/smallworld/smallworldpaper.html
19http://cscs.umich.edu/~crshalizi/notebooks/complex-networks.html

35


